Package 'VineCopula'

Title: Statistical Inference of Vine Copulas
Description: Provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Authors: Thomas Nagler [aut, cre], Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb], Harry Joe [ctb], Thibault Vatter [ctb]
Maintainer: Thomas Nagler <[email protected]>
License: GPL (>= 2)
Version: 2.5.2
Built: 2025-01-15 06:27:05 UTC
Source: https://github.com/tnagler/vinecopula

Help Index


Statistical Inference of Vine Copulas

Description

Provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.

Details

Vine copulas are a flexible class of dependence models consisting of bivariate building blocks (see e.g., Aas et al., 2009). This package is primarily made for the statistical analysis of vine copula models. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.

The DESCRIPTION file:

Package: VineCopula
Type: Package
Title: Statistical Inference of Vine Copulas
Version: 2.5.2
Description: Provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Authors@R: c( person("Thomas", "Nagler",, "[email protected]", role = c("aut", "cre")), person("Ulf", "Schepsmeier",, "[email protected]", role = "aut"), person("Jakob", "Stoeber",, role = "aut"), person("Eike Christian", "Brechmann",, role = "aut"), person("Benedikt", "Graeler",, role = "aut"), person("Tobias", "Erhardt",, "[email protected]", role = "aut"), person("Carlos", "Almeida",, role = "ctb"), person("Aleksey", "Min",, role = c("ctb", "ths")), person("Claudia", "Czado",, role = c("ctb", "ths")), person("Mathias", "Hofmann",, role = "ctb"), person("Matthias", "Killiches",, role = "ctb"), person("Harry", "Joe",, role = "ctb"), person("Thibault", "Vatter",, role = "ctb") )
Depends: R (>= 3.1.0)
Imports: graphics, grDevices, stats, utils, MASS, mvtnorm, methods, ADGofTest, lattice, parallel
Suggests: TSP, shiny, testthat, numDeriv, kdecopula (>= 0.8.0), network
License: GPL (>= 2)
LazyLoad: yes
BugReports: https://github.com/tnagler/VineCopula/issues
URL: https://github.com/tnagler/VineCopula
RoxygenNote: 7.3.2.9000
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
Repository: https://tnagler.r-universe.dev
RemoteUrl: https://github.com/tnagler/vinecopula
RemoteRef: HEAD
RemoteSha: dfefd32a93dc5b16164304f52e1592853f1ddb9d
Author: Thomas Nagler [aut, cre], Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb], Harry Joe [ctb], Thibault Vatter [ctb]
Maintainer: Thomas Nagler <[email protected]>

Remark

The package VineCopula is a continuation of the package CDVine by U. Schepsmeier and E. C. Brechmann (see Brechmann and Schepsmeier (2013)). It includes all functions implemented in CDVine for the bivariate case (BiCop-functions).

Author(s)

Maintainer: Thomas Nagler [email protected]

Authors:

Other contributors:

  • Carlos Almeida [contributor]

  • Aleksey Min [contributor, thesis advisor]

  • Claudia Czado [contributor, thesis advisor]

  • Mathias Hofmann [contributor]

  • Matthias Killiches [contributor]

  • Harry Joe [contributor]

  • Thibault Vatter [contributor]

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

Bedford, T. and R. M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial intelligence 32, 245-268.

Bedford, T. and R. M. Cooke (2002). Vines - a new graphical model for dependent random variables. Annals of Statistics 30, 1031-1068.

Brechmann, E. C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40 (1), 68-85.

Brechmann, E. C. and C. Czado (2011). Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling, 30 (4), 307-342.

Brechmann, E. C. and U. Schepsmeier (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52 (3), 1-27. doi:10.18637/jss.v052.i03.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Eschenburg, P. (2013). Properties of extreme-value copulas Diploma thesis, Technische Universitaet Muenchen https://mediatum.ub.tum.de/node?id=1145695

Joe, H. (1996). Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, and M. D. Taylor (Eds.), Distributions with fixed marginals and related topics, pp. 120-141. Hayward: Institute of Mathematical Statistics.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman and Hall.

Knight, W. R. (1966). A computer method for calculating Kendall's tau with ungrouped data. Journal of the American Statistical Association 61 (314), 436-439.

Kurowicka, D. and R. M. Cooke (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. Chichester: John Wiley.

Kurowicka, D. and H. Joe (Eds.) (2011). Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Co.

Nelsen, R. (2006). An introduction to copulas. Springer

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

Schepsmeier, U. (2013) A goodness-of-fit test for regular vine copula models. Preprint https://arxiv.org/abs/1306.0818

Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 28 (6), 2679-2707
https://link.springer.com/article/10.1007/s00180-013-0423-8#.

White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-26.

See Also

Useful links:


Copula Data Objects

Description

The function as.copuladata coerces an object (data.frame, matrix, list) to a copuladata object.

Usage

as.copuladata(data)

Arguments

data

Either a data.frame, a matrix or a list containing copula data (i.e. data with uniform margins on [0,1][0,1]). The list elements have to be vectors of identical length.

Author(s)

Tobias Erhardt

See Also

pobs(), pairs.copuladata()

Examples

data(daxreturns)

data <- as.matrix(daxreturns)
class(as.copuladata(data))

data <- as.data.frame(daxreturns)
class(as.copuladata(data))

data <- as.list(daxreturns)
names(data) <- names(daxreturns)
class(as.copuladata(data))

Matrix of Empirical Blomqvist's Beta Values

Description

This function computes the empirical Blomqvist's beta.

Usage

BetaMatrix(data)

Arguments

data

An N x d data matrix.

Value

Matrix of the empirical Blomqvist's betas.

Author(s)

Ulf Schepsmeier

References

Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals of Mathematical Statistics, 21(4), 593-600.

Nelsen, R. (2006). An introduction to copulas. Springer

See Also

TauMatrix(), BiCopPar2Beta(), RVinePar2Beta()

Examples

data(daxreturns)
data <- as.matrix(daxreturns)

# compute the empirical Blomqvist's betas
BetaMatrix(data)

Constructing BiCop-objects

Description

This function creates an object of class BiCop and checks for family/parameter consistency.

Usage

BiCop(family, par, par2 = 0, tau = NULL, check.pars = TRUE)

Arguments

family

An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

Copula parameter.

par2

Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default is par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

tau

numeric; value of Kendall's tau; has to lie in the interval (-1, 1). Can only be used with one-parameter families and the t copula. If tau is provided, par will be ignored.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

An object of class BiCop(). It is a list containing information about the bivariate copula. Its components are:

family, par, par2

copula family number and parameter(s),

npars

number of parameters,

familyname

name of the copula family,

tau

Kendall's tau,

beta

Blomqvist's beta,

taildep

lower and upper tail dependence coefficients,

call

the call that created the object.

Objects of this class are also returned by the BiCopEst() and BiCopSelect() functions. In this case, further information about the fit is added.

Note

For a comprehensive summary of the model, use summary(object); to see all its contents, use str(object).

Author(s)

Thomas Nagler

See Also

BiCopPDF(), BiCopHfunc(), BiCopSim(), BiCopEst(), BiCopSelect(), plot.BiCop(), contour.BiCop()

Examples

## create BiCop object for bivariate t-copula
obj <- BiCop(family = 2, par = 0.4, par2 = 6)
obj

## see the object's content or a summary
str(obj)
summary(obj)

## a selection of functions that can be used with BiCop objects
simdata <- BiCopSim(300, obj)  # simulate data
BiCopPDF(0.5, 0.5, obj) # evaluate density in (0.5,0.5)
plot(obj)  # surface plot of copula density
contour(obj)  # contour plot with standard normal margins
print(obj)  # brief overview of BiCop object
summary(obj)  # comprehensive overview of BiCop object

Distribution Function of a Bivariate Copula

Description

This function evaluates the cumulative distribution function (CDF) of a given parametric bivariate copula.

Usage

BiCopCDF(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

numeric; single number or vector of size length(u1); second parameter for bivariate copulas with two parameters (BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0).

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopCDF(u1, u2, obj)

can be used.

Value

A numeric vector of the bivariate copula distribution function

  • of the copula family

  • with parameter(s) par, par2

  • evaluated at u1 and u2.

Note

The calculation of the cumulative distribution function (CDF) of the Student's t copula (family = 2) is only approximate. For numerical reasons, the degree of freedom parameter (par2) is rounded to an integer before calculation of the CDF.

Author(s)

Eike Brechmann

See Also

BiCopPDF(), BiCopHfunc(), BiCopSim(), BiCop()

Examples

## simulate from a bivariate Clayton copula
set.seed(123)
cop <- BiCop(family = 3, par = 3.4)
simdata <- BiCopSim(300, cop)

## evaluate the distribution function of the bivariate Clayton copula
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopCDF(u1, u2, cop)

## select a bivariate copula for the simulated data
cop <- BiCopSelect(u1, u2)
summary(cop)
## and evaluate its CDF
BiCopCDF(u1, u2, cop)

Check for family/parameter consistency in bivariate copula models

Description

The function checks if a certain combination of copula family and parameters can be used within other functions of this package.

Usage

BiCopCheck(family, par, par2 = 0, ...)

Arguments

family

An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

Copula parameter.

par2

Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default is par2 = 0).

...

used internally.

Value

A logical indicating whether the family can be used with the parameter specification.

Author(s)

Thomas Nagler

Examples

## check parameter of Clayton copula
BiCopCheck(3, 1)  # works

## Not run: BiCopCheck(3, -1)  # does not work (only positive parameter is allowed)

Chi-plot for Bivariate Copula Data

Description

This function creates a chi-plot of given bivariate copula data.

Usage

BiCopChiPlot(u1, u2, PLOT = TRUE, mode = "NULL", ...)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

PLOT

Logical; whether the results are plotted. If PLOT = FALSE, the values lambda, chi and control.bounds are returned (see below; default: PLOT = TRUE).

mode

Character; whether a general, lower or upper chi-plot is calculated. Possible values are mode = "NULL", "upper" and "lower".
"NULL" = general chi-plot (default)
"upper" = upper chi-plot
"lower" = lower chi-plot

...

Additional plot arguments.

Details

For observations ui,j, i=1,...,N, j=1,2,u_{i,j},\ i=1,...,N,\ j=1,2, the chi-plot is based on the following two quantities: the chi-statistics

χi=F^1,2(ui,1,ui,2)F^1(ui,1)F^2(ui,2)F^1(ui,1)(1F^1(ui,1))F^2(ui,2)(1F^2(ui,2)),\chi_i = \frac{\hat{F}_{1,2}(u_{i,1},u_{i,2}) - \hat{F}_{1}(u_{i,1})\hat{F}_{2}(u_{i,2})}{ \sqrt{\hat{F}_{1}(u_{i,1})(1-\hat{F}_{1}(u_{i,1})) \hat{F}_{2}(u_{i,2})(1-\hat{F}_{2}(u_{i,2}))}},

and the lambda-statistics

λi=4sgn(F~1(ui,1),F~2(ui,2))max(F~1(ui,1)2,F~2(ui,2)2),\lambda_i = 4 sgn\left( \tilde{F}_{1}(u_{i,1}),\tilde{F}_{2}(u_{i,2}) \right) \cdot \max\left( \tilde{F}_{1}(u_{i,1})^2,\tilde{F}_{2}(u_{i,2})^2 \right),

where F^1\hat{F}_{1}, F^2\hat{F}_{2} and F^1,2\hat{F}_{1,2} are the empirical distribution functions of the uniform random variables U1U_1 and U2U_2 and of (U1,U2)(U_1,U_2), respectively. Further, F~1=F^10.5\tilde{F}_{1}=\hat{F}_{1}-0.5 and F~2=F^20.5\tilde{F}_{2}=\hat{F}_{2}-0.5.

These quantities only depend on the ranks of the data and are scaled to the interval [0,1][0,1]. λi\lambda_i measures a distance of a data point (ui,1,ui,2)\left(u_{i,1},u_{i,2}\right) to the center of the bivariate data set, while χi\chi_i corresponds to a correlation coefficient between dichotomized values of U1U_1 and U2U_2. Under independence it holds that χiN(0,1N)\chi_i \sim \mathcal{N}(0,\frac{1}{N}) and λiU[1,1]\lambda_i \sim \mathcal{U}[-1,1] asymptotically, i.e., values of χi\chi_i close to zero indicate independence—corresponding to F1,2=F1F2F_{1, 2}=F_{1}F_{2}.

When plotting these quantities, the pairs of (λi,χi)\left(\lambda_i, \chi_i \right) will tend to be located above zero for positively dependent margins and vice versa for negatively dependent margins. Control bounds around zero indicate whether there is significant dependence present.

If mode = "lower" or "upper", the above quantities are calculated only for those ui,1u_{i,1}'s and ui,2u_{i,2}'s which are smaller/larger than the respective means of u1=(u1,1,...,uN,1)=(u_{1,1},...,u_{N,1}) and u2=(u1,2,...,uN,2)=(u_{1,2},...,u_{N,2}).

Value

lambda

Lambda-statistics (x-axis).

chi

Chi-statistics (y-axis).

control.bounds

A 2-dimensional vector of bounds ((1.54/n,1.54/n)((1.54/\sqrt{n},-1.54/\sqrt{n}), where nn is the length of u1 and where the chosen values correspond to an approximate significance level of 10%10\%.

Author(s)

Natalia Belgorodski, Ulf Schepsmeier

References

Abberger, K. (2004). A simple graphical method to explore tail-dependence in stock-return pairs. Discussion Paper, University of Konstanz, Germany.

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour(), BiCopKPlot(), BiCopLambda()

Examples

## chi-plots for bivariate Gaussian copula data

# simulate copula data
fam <- 1
tau <- 0.5
par <- BiCopTau2Par(fam, tau)
cop <- BiCop(fam, par)
set.seed(123)
dat <- BiCopSim(500, cop)

# create chi-plots
op <- par(mfrow = c(1, 3))
BiCopChiPlot(dat[,1], dat[,2], xlim = c(-1,1), ylim = c(-1,1),
             main="General chi-plot")
BiCopChiPlot(dat[,1], dat[,2], mode = "lower", xlim = c(-1,1),
             ylim = c(-1,1), main = "Lower chi-plot")
BiCopChiPlot(dat[,1], dat[,2], mode = "upper", xlim = c(-1,1),
             ylim = c(-1,1), main = "Upper chi-plot")
par(op)

Shiny app for bivariate copula selection

Description

The function starts a shiny app which visualizes copula data and allows to compare it with overlays of density contours or simulated data from different copula families with fitted parameters. Several specifications for the margins are available.

Usage

BiCopCompare(u1, u2, familyset = NA, rotations = TRUE)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

familyset

Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but abs(familyset) families is performed. Coding of bivariate copula families:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

rotations

If TRUE, all rotations of the families in familyset are included (or subtracted).

Value

A BiCop() object containing the model selected by the user.

Author(s)

Matthias Killiches, Thomas Nagler

Examples

# load data
data(daxreturns)

# find a suitable copula family for the first two stocks
## Not run: fit <- BiCopCompare(daxreturns[, 1], daxreturns[, 2])

Conditional simulation from a Bivariate Copula

Description

This function simulates from a parametric bivariate copula, where on of the variables is fixed. I.e., we simulate either from C21(u2u1;θ)C_{2|1}(u_2|u_1;\theta) or C12(u1u2;θ)C_{1|2}(u_1|u_2;\theta), which are both conditional distribution functions of one variable given another.

Usage

BiCopCondSim(
  N,
  cond.val,
  cond.var,
  family,
  par,
  par2 = 0,
  obj = NULL,
  check.pars = TRUE
)

Arguments

N

Number of observations simulated.

cond.val

numeric vector of length N containing the values to condition on.

cond.var

either 1 or 2; the variable to condition on.

family

integer; single number or vector of size N; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size N; copula parameter.

par2

numeric; single number or vector of size N; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be a positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopCondSim(N, cond.val, cond.var, obj)

can be used.

Value

A length N vector of simulated from conditional distributions related to bivariate copula with family and parameter(s) par, par2.

Author(s)

Thomas Nagler

See Also

BiCopCDF(), BiCopPDF(), RVineSim()

Examples

# create bivariate t-copula
obj <- BiCop(family = 2, par = -0.7, par2 = 4)

# simulate 500 observations of (U1, U2)
sim <- BiCopSim(500, obj)
hist(sim[, 1])  # data have uniform distribution
hist(sim[, 2])  # data have uniform distribution

# simulate 500 observations of (U2 | U1 = 0.7)
sim1 <- BiCopCondSim(500, cond.val = 0.7, cond.var = 1, obj)
hist(sim1)  # not uniform!

# simulate 500 observations of (U1 | U2 = 0.1)
sim2 <- BiCopCondSim(500, cond.val = 0.1, cond.var = 2, obj)
hist(sim2)  # not uniform!

Derivatives of a Bivariate Copula Density

Description

This function evaluates the derivative of a given parametric bivariate copula density with respect to its parameter(s) or one of its arguments.

Usage

BiCopDeriv(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  log = FALSE,
  obj = NULL,
  check.pars = TRUE
)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = derivative with respect to the first parameter (default)
"par2" = derivative with respect to the second parameter (only available for the t-copula)
"u1" = derivative with respect to the first argument u1
"u2" = derivative with respect to the second argument u2

log

Logical; if TRUE than the derivative of the log-likelihood is returned (default: log = FALSE; only available for the derivatives with respect to the parameter(s) (deriv = "par" or deriv = "par2")).

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopDeriv(u1, u2, obj, deriv = "par", log = FALSE)

can be used.

Value

A numeric vector of the bivariate copula derivative

  • of the copula family

  • with parameter(s) par, par2

  • with respect to deriv,

  • evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier

References

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad(), RVineHessian(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples

## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## derivative of the bivariate t-copula with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its derivative w.r.t. the second argument u2
BiCopDeriv(u1, u2, cop, deriv = "u2")

Second Derivatives of a Bivariate Copula Density

Description

This function evaluates the second derivative of a given parametric bivariate copula density with respect to its parameter(s) and/or its arguments.

Usage

BiCopDeriv2(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

Copula parameter.

par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = second derivative with respect to the first parameter (default)
"par2" = second derivative with respect to the second parameter (only available for the t-copula)
"u1" = second derivative with respect to the first argument u1
"u2" = second derivative with respect to the second argument u2
"par1par2" = second derivative with respect to the first and second parameter (only available for the t-copula)
"par1u1" = second derivative with respect to the first parameter and the first argument
"par2u1" = second derivative with respect to the second parameter and the first argument (only available for the t-copula)
"par1u2" = second derivative with respect to the first parameter and the second argument
"par2u2" = second derivative with respect to the second parameter and the second argument (only available for the t-copula)

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopDeriv2(u1, u2, obj, deriv = "par")

can be used.

Value

A numeric vector of the second-order bivariate copula derivative

  • of the copula family

  • with parameter(s) par, par2

  • with respect to deriv

  • evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad(), RVineHessian(), BiCopDeriv(), BiCopHfuncDeriv(), BiCop()

Examples

## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## second derivative of the Student-t copula w.r.t. the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv2(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its second derivative w.r.t. the second argument u2
BiCopDeriv2(u1, u2, cop, deriv = "u2")

Parameter Estimation for Bivariate Copula Data

Description

This function estimates the parameter(s) of a bivariate copula using either inversion of empirical Kendall's tau (for one parameter copula families only) or maximum likelihood estimation for implemented copula families.

Usage

BiCopEst(
  u1,
  u2,
  family,
  method = "mle",
  se = FALSE,
  max.df = 30,
  max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
  weights = NA
)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

family

An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

method

indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (⁠family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34⁠ or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

se

Logical; whether standard error(s) of parameter estimates is/are estimated (default: se = FALSE).

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30).

max.BB

List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

weights

Numerical; weights for each observation (optional).

Details

If method = "itau", the function computes the empirical Kendall's tau of the given copula data and exploits the one-to-one relationship of copula parameter and Kendall's tau which is available for many one parameter bivariate copula families (see BiCopPar2Tau() and BiCopTau2Par()). The inversion of Kendall's tau is however not available for all bivariate copula families (see above). If a two parameter copula family is chosen and method = "itau", a warning message is returned and the MLE is calculated.

For method = "mle" copula parameters are estimated by maximum likelihood using starting values obtained by method = "itau". If no starting values are available by inversion of Kendall's tau, starting values have to be provided given expert knowledge and the boundaries max.df and max.BB respectively. Note: The MLE is performed via numerical maximization using the L_BFGS-B method. For the Gaussian, the t- and the one-parametric Archimedean copulas we can use the gradients, but for the BB copulas we have to use finite differences for the L_BFGS-B method.

A warning message is returned if the estimate of the degrees of freedom parameter of the t-copula is larger than max.df. For high degrees of freedom the t-copula is almost indistinguishable from the Gaussian and it is advised to use the Gaussian copula in this case. As a rule of thumb max.df = 30 typically is a good choice. Moreover, standard errors of the degrees of freedom parameter estimate cannot be estimated in this case.

Value

An object of class BiCop(), augmented with the following entries:

se, se2

standard errors for the parameter estimates (if se = TRUE,

nobs

number of observations,

logLik

log likelihood

AIC

Aikaike's Informaton Criterion,

BIC

Bayesian's Informaton Criterion,

emptau

empirical value of Kendall's tau,

p.value.indeptest

p-value of the independence test.

Note

For a comprehensive summary of the fitted model, use summary(object); to see all its contents, use str(object).

Author(s)

Ulf Schepsmeier, Eike Brechmann, Jakob Stoeber, Carlos Almeida

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCop(), BiCopPar2Tau(), BiCopTau2Par(), RVineSeqEst(), BiCopSelect(),

Examples

## Example 1: bivariate Gaussian copula
dat <- BiCopSim(500, 1, 0.7)
u1 <- dat[, 1]
v1 <- dat[, 2]

# estimate parameters of Gaussian copula by inversion of Kendall's tau
est1.tau <- BiCopEst(u1, v1, family = 1, method = "itau")
est1.tau  # short overview
summary(est1.tau)  # comprehensive overview
str(est1.tau)  # see all contents of the object

# check if parameter actually coincides with inversion of Kendall's tau
tau1 <- cor(u1, v1, method = "kendall")
all.equal(BiCopTau2Par(1, tau1), est1.tau$par)

# maximum likelihood estimate for comparison
est1.mle <- BiCopEst(u1, v1, family = 1, method = "mle")
summary(est1.mle)


## Example 2: bivariate Clayton and survival Gumbel copulas
# simulate from a Clayton copula
dat <- BiCopSim(500, 3, 2.5)
u2 <- dat[, 1]
v2 <- dat[, 2]

# empirical Kendall's tau
tau2 <- cor(u2, v2, method = "kendall")

# inversion of empirical Kendall's tau for the Clayton copula
BiCopTau2Par(3, tau2)
BiCopEst(u2, v2, family = 3, method = "itau")

# inversion of empirical Kendall's tau for the survival Gumbel copula
BiCopTau2Par(14, tau2)
BiCopEst(u2, v2, family = 14, method = "itau")

# maximum likelihood estimates for comparison
BiCopEst(u2, v2, family = 3, method = "mle")
BiCopEst(u2, v2, family = 14, method = "mle")

List of Maximum Likelihood Estimates for Several Bivariate Copula Families

Description

This function allows to compare bivariate copula models across a number of families w.r.t. the fit statistics log-likelihood, AIC, and BIC. For each family, the parameters are estimated by maximum likelihood.

Usage

BiCopEstList(u1, u2, familyset = NA, weights = NA, rotations = TRUE, ...)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

familyset

Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. Coding of bivariate copula families:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

weights

Numerical; weights for each observation (optional).

rotations

If TRUE, all rotations of the families in familyset are included.

...

further arguments passed to BiCopEst().

Details

First all available copulas are fitted using maximum likelihood estimation. Then the criteria are computed for all available copula families (e.g., if u1 and u2 are negatively dependent, Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 and their survival copulas are not considered) and the family with the minimum value is chosen. For observations ui,j, i=1,...,N, j=1,2,u_{i,j},\ i=1,...,N,\ j=1,2, the AIC of a bivariate copula family cc with parameter(s) θ\boldsymbol{\theta} is defined as

AIC:=2i=1Nln[c(ui,1,ui,2θ)]+2k,AIC := -2 \sum_{i=1}^N \ln[c(u_{i,1},u_{i,2}|\boldsymbol{\theta})] + 2k,

where k=1k=1 for one parameter copulas and k=2k=2 for the two parameter t-, BB1, BB6, BB7 and BB8 copulas. Similarly, the BIC is given by

BIC:=2i=1Nln[c(ui,1,ui,2θ)]+ln(N)k.BIC := -2 \sum_{i=1}^N \ln[c(u_{i,1},u_{i,2}|\boldsymbol{\theta})] + \ln(N)k.

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using the AIC.

Value

A list containing

models

a list of BiCop() objects corresponding to the 'familyset“ (only families corresponding to the sign of the empirical Kendall's tau are used),

summary

a data frame containing the log-likelihoods, AICs, and BICs of all the fitted models.

Author(s)

Thomas Nagler

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267-281.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.

See Also

BiCop(), BiCopEst()

Examples

## compare models
data(daxreturns)
comp <- BiCopEstList(daxreturns[, 1], daxreturns[, 4])

Goodness-of-Fit Test for Bivariate Copulas

Description

This function performs a goodness-of-fit test for bivariate copulas, either based on White's information matrix equality (White, 1982) as introduced by Huang and Prokhorov (2011) or based on Kendall's process (Wang and Wells, 2000; Genest et al., 2006). It computes the test statistics and p-values.

Usage

BiCopGofTest(
  u1,
  u2,
  family,
  par = 0,
  par2 = 0,
  method = "white",
  max.df = 30,
  B = 100,
  obj = NULL
)

Arguments

u1, u2

Numeric vectors of equal length with values in [0,1][0,1].

family

An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula) (only for method = "white"; see details)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula (only for method = "kendall")
8 = BB6 copula (only for method = "kendall")
9 = BB7 copula (only for method = "kendall")
10 = BB8 copula (only for method ="kendall")
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”; only for method = "kendall")
18 = rotated BB6 copula (180 degrees; ⁠survival BB6''; only for `method = "kendall"`)\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”; only for method = "kendall")
20 = rotated BB8 copula (180 degrees; “survival BB8”; only for method = "kendall")
'23' = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees; only for 'method = "kendall"')
'28' = rotated BB6 copula (90 degrees; only for 'method = "kendall"')
'29' = rotated BB7 copula (90 degrees; only for 'method = "kendall"')
'30' = rotated BB8 copula (90 degrees; only for 'method = "kendall"')
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees; only for 'method = "kendall"')
'38' = rotated BB6 copula (270 degrees; only for 'method = "kendall"')
'39' = rotated BB7 copula (270 degrees; only for 'method = "kendall"')
'40' = rotated BB8 copula (270 degrees; only for 'method = "kendall"')

par

Copula parameter (optional).

par2

Second parameter for bivariate t-copula (optional); default: par2 = 0.

method

A string indicating the goodness-of-fit method:
"white" = goodness-of-fit test based on White's information matrix equality (default)
"kendall" = goodness-of-fit test based on Kendall's process

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30).

B

Integer; number of bootstrap samples (default: B = 100). For B = 0 only the the test statistics are returned.
WARNING: If B is chosen too large, computations will take very long.

obj

BiCop object containing the family and parameter specification.

Details

method = "white":
This goodness-of fit test uses the information matrix equality of White (1982) and was investigated by Huang and Prokhorov (2011). The main contribution is that under correct model specification the Fisher Information can be equivalently calculated as minus the expected Hessian matrix or as the expected outer product of the score function. The null hypothesis is

H0:H(θ)+C(θ)=0H_0: \boldsymbol{H}(\theta) + \boldsymbol{C}(\theta) = 0

against the alternative

H0:H(θ)+C(θ)0,H_0: \boldsymbol{H}(\theta) + \boldsymbol{C}(\theta) \neq 0 ,

where H(θ)\boldsymbol{H}(\theta) is the expected Hessian matrix and C(θ)\boldsymbol{C}(\theta) is the expected outer product of the score function. For the calculation of the test statistic we use the consistent maximum likelihood estimator θ^\hat{\theta} and the sample counter parts of H(θ)\boldsymbol{H}(\theta) and C(θ)\boldsymbol{C}(\theta). The correction of the covariance-matrix in the test statistic for the uncertainty in the margins is skipped. The implemented tests assumes that where is no uncertainty in the margins. The correction can be found in Huang and Prokhorov (2011). It involves two-dimensional integrals.
WARNING: For the t-copula the test may be unstable. The results for the t-copula therefore have to be treated carefully.

method = "kendall":
This copula goodness-of-fit test is based on Kendall's process as proposed by Wang and Wells (2000). For computation of p-values, the parametric bootstrap described by Genest et al. (2006) is used. For rotated copulas the input arguments are transformed and the goodness-of-fit procedure for the corresponding non-rotated copula is used.

Value

For method = "white":

p.value

Asymptotic p-value.

statistic

The observed test statistic.


For method ="kendall"

p.value.CvM

Bootstrapped p-value of the goodness-of-fit test using the Cramer-von Mises statistic (if B > 0).

p.value.KS

Bootstrapped p-value of the goodness-of-fit test using the Kolmogorov-Smirnov statistic (if B > 0).

statistic.CvM

The observed Cramer-von Mises test statistic.

statistic.KS

The observed Kolmogorov-Smirnov test statistic.

Author(s)

Ulf Schepsmeier, Wanling Huang, Jiying Luo, Eike Brechmann

References

Huang, W. and A. Prokhorov (2014). A goodness-of-fit test for copulas. Econometric Reviews, 33 (7), 751-771.

Wang, W. and M. T. Wells (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95 (449), 62-72.

Genest, C., Quessy, J. F., and Remillard, B. (2006). Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation. Scandinavian Journal of Statistics, 33(2), 337-366. Luo J. (2011). Stepwise estimation of D-vines with arbitrary specified copula pairs and EDA tools. Diploma thesis, Technische Universitaet Muenchen.
https://mediatum.ub.tum.de/?id=1079291.

White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-26.

See Also

BiCopDeriv2(), BiCopDeriv(), BiCopIndTest(), BiCopVuongClarke()

Examples

# simulate from a bivariate Clayton copula

simdata <- BiCopSim(100, 3, 2)
u1 <- simdata[,1]
u2 <- simdata[,2]

# perform White's goodness-of-fit test for the true copula
BiCopGofTest(u1, u2, family = 3)

# perform White's goodness-of-fit test for the Frank copula
BiCopGofTest(u1, u2, family = 5)

# perform Kendall's goodness-of-fit test for the true copula
BiCopGofTest(u1, u2, family = 3, method = "kendall", B=50)

# perform Kendall's goodness-of-fit test for the Frank copula
BiCopGofTest(u1, u2, family = 5, method = "kendall", B=50)

Conditional Distribution Function of a Bivariate Copula

Description

Evaluate the conditional distribution function (h-function) of a given parametric bivariate copula.

Usage

BiCopHfunc(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHfunc1(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHfunc2(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

numeric; single number or vector of size length(u1); second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,

h1(u2u1;θ):=P(U2u2U1=u1)=C(u1,u2;θ)u1,h_1(u_2|u_1;\boldsymbol{\theta}) := P(U_2 \le u_2 | U_1 = u_1) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_1},

h2(u1u2;θ):=P(U1u1U2=u2)=C(u1,u2;θ)u2,h_2(u_1|u_2;\boldsymbol{\theta}) := P(U_1 \le u_1 | U_2 = u_2) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_2},

where (U1,U2)C(U_1, U_2) \sim C, and CC is a bivariate copula distribution function with parameter(s) θ\boldsymbol{\theta}. For more details see Aas et al. (2009).

If the family and parameter specification is stored in a BiCop() object obj, the alternative versions

BiCopHfunc(u1, u2, obj)
BiCopHfunc1(u1, u2, obj)
BiCopHfunc2(u1, u2, obj)

can be used.

Value

BiCopHfunc returns a list with

hfunc1

Numeric vector of the conditional distribution function (h-function) of the copula family with parameter(s) par, par2 evaluated at u2 given u1, i.e., h1(u2u1;θ)h_1(u_2|u_1;\boldsymbol{\theta}).

hfunc2

Numeric vector of the conditional distribution function (h-function) of the copula family with parameter(s) par, par2 evaluated at u1 given u2, i.e., h2(u1u2;θ)h_2(u_1|u_2;\boldsymbol{\theta}).

BiCopHfunc1 is a faster version that only calculates hfunc1; BiCopHfunc2 only calculates hfunc2.

Author(s)

Ulf Schepsmeier

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

BiCopHinv(), BiCopPDF(), BiCopCDF(), RVineLogLik(), RVineSeqEst(), BiCop()

Examples

data(daxreturns)

# h-functions of the Gaussian copula
cop <- BiCop(family = 1, par = 0.5)
h <- BiCopHfunc(daxreturns[, 2], daxreturns[, 1], cop)

# or using the fast versions
h1 <- BiCopHfunc1(daxreturns[, 2], daxreturns[, 1], cop)
h2 <- BiCopHfunc2(daxreturns[, 2], daxreturns[, 1], cop)
all.equal(h$hfunc1, h1)
all.equal(h$hfunc2, h2)

Derivatives of the h-Function of a Bivariate Copula

Description

This function evaluates the derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) or one of its arguments.

Usage

BiCopHfuncDeriv(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family: \
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = derivative with respect to the first parameter (default)
"par2" = derivative with respect to the second parameter (only available for the t-copula)
"u2" = derivative with respect to the second argument u2

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopHfuncDeriv(u1, u2, obj, deriv = "par")

can be used.

Value

A numeric vector of the conditional bivariate copula derivative

  • of the copula family,

  • with parameter(s) par, par2,

  • with respect to deriv,

  • evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier

References

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad(), RVineHessian(), BiCopDeriv2(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples

## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## derivative of the conditional Student-t copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv(u1, u2, cop, deriv = "u2")

Second Derivatives of the h-Function of a Bivariate Copula

Description

This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.

Usage

BiCopHfuncDeriv2(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = second derivative with respect to the first parameter (default)
"par2" = second derivative with respect to the second parameter (only available for the t-copula)
"u2" = second derivative with respect to the second argument u2
"par1par2" = second derivative with respect to the first and second parameter (only available for the t-copula)
"par1u2" = second derivative with respect to the first parameter and the second argument
"par2u2" = second derivative with respect to the second parameter and the second argument (only available for the t-copula)

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")

can be used.

Value

A numeric vector of the second-order conditional bivariate copula derivative

  • of the copula family

  • with parameter(s) par, par2

  • with respect to deriv

  • evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad(), RVineHessian(), BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples

## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## second derivative of the conditional bivariate t-copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv2(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")

Inverse Conditional Distribution Function of a Bivariate Copula

Description

Evaluate the inverse conditional distribution function (inverse h-function) of a given parametric bivariate copula.

Usage

BiCopHinv(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHinv1(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHinv2(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

numeric; single number or vector of size length(u1); second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,

h1(u2u1;θ):=P(U2u2U1=u1)=C(u1,u2;θ)u1,h_1(u_2|u_1;\boldsymbol{\theta}) := P(U_2 \le u_2 | U_1 = u_1) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_1},

h2(u1u2;θ):=P(U1u1U2=u2)=C(u1,u2;θ)u2,h_2(u_1|u_2;\boldsymbol{\theta}) := P(U_1 \le u_1 | U_2 = u_2) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_2},

where (U1,U2)C(U_1, U_2) \sim C, and CC is a bivariate copula distribution function with parameter(s) θ\boldsymbol{\theta}. For more details see Aas et al. (2009).

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopHinv(u1, u2, obj),
BiCopHinv1(u1, u2, obj),
BiCopHinv2(u1, u2, obj)

can be used.

Value

BiCopHinv returns a list with

hinv1

Numeric vector of the inverse conditional distribution function (inverse h-function) of the copula family with parameter(s) par, par2 evaluated at u2 given u1, i.e., h11(u2u1;θ)h_1^{-1}(u_2|u_1;\boldsymbol{\theta}).

hinv2

Numeric vector of the inverse conditional distribution function (inverse h-function) of the copula family with parameter(s) par, par2 evaluated at u1 given u2, i.e., h21(u1u2;θ)h_2^{-1}(u_1|u_2;\boldsymbol{\theta}).

BiCopHinv1 is a faster version that only calculates hinv1; BiCopHinv2 only calculates hinv2.

Author(s)

Ulf Schepsmeier, Thomas Nagler

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

BiCopHfunc(), BiCopPDF(), BiCopCDF(), RVineLogLik(), RVineSeqEst(), BiCop()

Examples

# inverse h-functions of the Gaussian copula
cop <- BiCop(1, 0.5)
hi <- BiCopHinv(0.1, 0.2, cop)

# or using the fast versions
hi1 <- BiCopHinv1(0.1, 0.2, cop)
hi2 <- BiCopHinv2(0.1, 0.2, cop)
all.equal(hi$hinv1, hi1)
all.equal(hi$hinv2, hi2)

# check if it is actually the inverse
cop <- BiCop(3, 3)
all.equal(0.2, BiCopHfunc1(0.1, BiCopHinv1(0.1, 0.2, cop), cop))
all.equal(0.1, BiCopHfunc2(BiCopHinv2(0.1, 0.2, cop), 0.2, cop))

Independence Test for Bivariate Copula Data

Description

This function returns the p-value of a bivariate asymptotic independence test based on Kendall's τ\tau.

Usage

BiCopIndTest(u1, u2)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

Details

The test exploits the asymptotic normality of the test statistic

statistic:=T=9N(N1)2(2N+5)×τ^,\texttt{statistic} := T = \sqrt{\frac{9N(N - 1)}{2(2N + 5)}} \times |\hat{\tau}|,

where NN is the number of observations (length of u1) and τ^\hat{\tau} the empirical Kendall's tau of the data vectors u1 and u2. The p-value of the null hypothesis of bivariate independence hence is asymptotically

p.value=2×(1Φ(T)),\texttt{p.value} = 2 \times \left(1 - \Phi\left(T\right)\right),

where Φ\Phi is the standard normal distribution function.

Value

statistic

Test statistic of the independence test.

p.value

P-value of the independence test.

Author(s)

Jeffrey Dissmann

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopGofTest(), BiCopPar2Tau(), BiCopTau2Par(), BiCopSelect(),
RVineCopSelect(), RVineStructureSelect()

Examples

## Example 1: Gaussian copula with large dependence parameter
cop <- BiCop(1, 0.7)
dat <- BiCopSim(500, cop)

# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])

## Example 2: Gaussian copula with small dependence parameter
cop <- BiCop(1, 0.01)
dat <- BiCopSim(500, cop)

# perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])

Kernel estimate of a Bivariate Copula Density

Description

A kernel density estimate of the copula density is visualized. The function provides the same options as plot.BiCop(). Further arguments can be passed to kdecopula::kdecop() to modify the estimate. The kdecopula::kdecopula-package() must be installed to use this function.

Usage

BiCopKDE(u1, u2, type = "contour", margins, size, kde.pars = list(), ...)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

type

plot type; either "contour" or "surface" (partial matching is activated) for a contour or perspective/surface plot respectively.

margins

only relevant for types "contour" and "surface"; options are: "unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins. Default is "norm" for type = "contour", and "unif" for type = "surface". "norm" for the transformed density with standard normal margins (partial matching is activated). Default is "norm" for type = "contour", and "unif" for type = "surface".

size

integer; the plot is based on values on a ⁠size x size⁠ grid; default is 100 for type = "contour", and 25 for type = "surface".

kde.pars

list of arguments passed to kdecopula::kdecop().

...

optional arguments passed to contour() or lattice::wireframe().

Details

For further details on estimation see kdecopula::kdecop().

Author(s)

Thomas Nagler

Examples

# simulate data from Joe copula
cop <- BiCop(3, tau = 0.3)
u <- BiCopSim(1000, cop)
contour(cop)  # true contours

# kernel contours with standard normal margins
BiCopKDE(u[, 1], u[, 2])
BiCopKDE(u[, 1], u[, 2], kde.pars = list(mult = 0.5))  # undersmooth
BiCopKDE(u[, 1], u[, 2], kde.pars = list(mult = 2))  # oversmooth

# kernel density with uniform margins
BiCopKDE(u[, 1], u[, 2], type = "surface", zlim = c(0, 4))
plot(cop, zlim = c(0, 4))  # true density

# kernel contours are also used in pairs.copuladata
data(daxreturns)
data <- as.copuladata(daxreturns)
pairs(data[c(4, 5, 14, 15)])

Kendall's Plot for Bivariate Copula Data

Description

This function creates a Kendall's plot (K-plot) of given bivariate copula data.

Usage

BiCopKPlot(u1, u2, PLOT = TRUE, ...)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

PLOT

Logical; whether the results are plotted. If PLOT = FALSE, the values W.in and Hi.sort are returned (see below; default: PLOT = TRUE).

...

Additional plot arguments.

Details

For observations ui,j, i=1,...,N, j=1,2,u_{i,j},\ i=1,...,N,\ j=1,2, the K-plot considers two quantities: First, the ordered values of the empirical bivariate distribution function Hi:=F^U1U2(ui,1,ui,2)H_i:=\hat{F}_{U_1U_2}(u_{i,1},u_{i,2}) and, second, Wi:NW_{i:N}, which are the expected values of the order statistics from a random sample of size NN of the random variable W=C(U1,U2)W=C(U_1,U_2) under the null hypothesis of independence between U1U_1 and U2U_2. Wi:NW_{i:N} can be calculated as follows

Wi:n=N(N1i1)01ωk0(ω)(K0(ω))i1(1K0(ω))Nidω,W_{i:n}= N {N-1 \choose i-1} \int\limits_{0}^1 \omega k_0(\omega) ( K_0(\omega) )^{i-1} ( 1-K_0(\omega) )^{N-i} d\omega,

where

K0(ω)=ωωlog(ω),K_0(\omega) = \omega - \omega \log(\omega),

and k0()k_0(\cdot) is the corresponding density.

K-plots can be seen as the bivariate copula equivalent to QQ-plots. If the points of a K-plot lie approximately on the diagonal y=xy=x, then U1U_1 and U2U_2 are approximately independent. Any deviation from the diagonal line points towards dependence. In case of positive dependence, the points of the K-plot should be located above the diagonal line, and vice versa for negative dependence. The larger the deviation from the diagonal, the stronger is the degree of dependency. There is a perfect positive dependence if points (Wi:N,Hi)\left(W_{i:N},H_i\right) lie on the curve K0(ω)K_0(\omega) located above the main diagonal. If points (Wi:N,Hi)\left(W_{i:N},H_i\right) however lie on the x-axis, this indicates a perfect negative dependence between U1U_1 and U2U_2.

Value

W.in

W-statistics (x-axis).

Hi.sort

H-statistics (y-axis).

Author(s)

Natalia Belgorodski, Ulf Schepsmeier

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour(), BiCopChiPlot(), BiCopLambda(), BiCopGofTest()

Examples

## Gaussian and Clayton copulas
n <- 500
tau <- 0.5

# simulate from Gaussian copula
fam <- 1
par <- BiCopTau2Par(fam, tau)
cop1 <- BiCop(fam, par)
set.seed(123)
dat1 <- BiCopSim(n, cop1)

# simulate from Clayton copula
fam <- 3
par <- BiCopTau2Par(fam, tau)
cop2 <- BiCop(fam, par)
set.seed(123)
dat2 <- BiCopSim(n, cop2)

# create K-plots
op <- par(mfrow = c(1, 2))
BiCopKPlot(dat1[,1], dat1[,2], main = "Gaussian copula")
BiCopKPlot(dat2[,1], dat2[,2], main = "Clayton copula")
par(op)

Lambda-Function (Plot) for Bivariate Copula Data

Description

This function plots/returns the lambda-function of given bivariate copula data.

Usage

BiCopLambda(
  u1 = NULL,
  u2 = NULL,
  family = "emp",
  par = 0,
  par2 = 0,
  PLOT = TRUE,
  obj = NULL,
  ...
)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1] (default: u1 and u2 = NULL).

family

An integer defining the bivariate copula family or indicating the empirical lambda-function:
"emp" = empirical lambda-function (default)
1 = Gaussian copula; the theoretical lambda-function is simulated (no closed formula available)
2 = Student-t copula; the theoretical lambda-function is simulated (no closed formula available)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula

par

Copula parameter; if the empirical lambda-function is chosen, par = NULL or 0 (default).

par2

Second copula parameter for t-, BB1, BB6, BB7 and BB8 copulas (default: par2 = 0).

PLOT

Logical; whether the results are plotted. If PLOT = FALSE, the values
empLambda and/or theoLambda are returned (see below; default: PLOT = TRUE).

obj

BiCop object containing the family and parameter specification.

...

Additional plot arguments.

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative versions

BiCopLambda(obj, PLOT = TRUE, ...)

and

BiCopLambda((u1, u2, obj, PLOT = TRUE, ...)

can be used.

Value

empLambda

If the empirical lambda-function is chosen and PLOT = FALSE, a vector of the empirical lambda's is returned.

theoLambda

If the theoretical lambda-function is chosen and PLOT = FALSE, a vector of the theoretical lambda's is returned.

Note

The λ\lambda-function is characteristic for each bivariate copula family and defined by Kendall's distribution function KK:

λ(v,θ):=vK(v,θ)\lambda(v,\theta) := v - K(v,\theta)

with

K(v,θ):=P(Cθ(U1,U2)v),  v[0,1].K(v,\theta) := P(C_{\theta}(U_1,U_2) \leq v),\ \ v\in [0,1].

For Archimedean copulas one has the following closed form expression in terms of the generator function φ\varphi of the copula CθC_{\theta}:

λ(v,θ)=φ(v)φ(v),\lambda(v,\theta) = \frac{\varphi(v)}{\varphi '(v)},

where φ\varphi ' is the derivative of φ\varphi. For more details see Genest and Rivest (1993) or Schepsmeier (2010).

For the bivariate Gaussian and Student-t copula no closed form expression for the theoretical λ\lambda-function exists. Therefore it is simulated based on samples of size 1000. For all other implemented copula families there are closed form expressions available.

The plot of the theoretical λ\lambda-function also shows the limits of the λ\lambda-function corresponding to Kendall's tau =0=0 and Kendall's tau =1=1 (λ=0\lambda=0).

For rotated bivariate copulas one has to transform the input arguments u1 and/or u2. In particular, for copulas rotated by 90 degrees u1 has to be set to 1-u1, for 270 degrees u2 to 1-u2 and for survival copulas u1 and u2 to 1-u1 and 1-u2, respectively. Then λ\lambda-functions for the corresponding non-rotated copula families can be considered.

Author(s)

Ulf Schepsmeier

References

Genest, C. and L.-P. Rivest (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423), 1034-1043.

Schepsmeier, U. (2010). Maximum likelihood estimation of C-vine pair-copula constructions based on bivariate copulas from different families. Diploma thesis, Technische Universitaet Muenchen.
https://mediatum.ub.tum.de/?id=1079296.

See Also

BiCopMetaContour(), BiCopKPlot(), BiCopChiPlot(), BiCop()

Examples

# simulate from Clayton copula
cop <- BiCop(3, tau = 0.5)
dat <- BiCopSim(1000, cop)

# create lambda-function plots
op <- par(mfrow = c(1, 3))
BiCopLambda(dat[, 1], dat[, 2])  # empirical lambda-function
BiCopLambda(cop)	# theoretical lambda-function
BiCopLambda(dat[, 1], dat[, 2], cop)	# both
par(op)

Contour Plot of Bivariate Meta Distribution

Description

Note: This function is deprecated and only available for backwards compatibility. See contour.BiCop() for contour plots of parametric copulas, and BiCopKDE() for kernel estimates.

Usage

BiCopMetaContour(
  u1 = NULL,
  u2 = NULL,
  bw = 1,
  size = 100,
  levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
  family = "emp",
  par = 0,
  par2 = 0,
  PLOT = TRUE,
  margins = "norm",
  margins.par = 0,
  xylim = NA,
  obj = NULL,
  ...
)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1] (default: u1 and u2 = NULL).

bw

Bandwidth (smoothing factor; default: bw = 1).

size

Number of grid points; default: size = 100.

levels

Vector of contour levels. For Gaussian, Student-t or exponential margins the default value (levels = c(0.01, 0.05, 0.1, 0.15, 0.2)) typically is a good choice. For uniform margins we recommend
levels = c(0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5)
and for Gamma margins
levels = c(0.005, 0.01, 0.03, 0.05, 0.07, 0.09).

family

An integer defining the bivariate copula family or indicating an empirical contour plot:
"emp" = empirical contour plot (default; margins can be specified by margins)
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

Copula parameter; if empirical contour plot, par = NULL or 0 (default).

par2

Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas (default: par2 = 0).

PLOT

Logical; whether the results are plotted. If PLOT = FALSE, the values x, y and z are returned (see below; default: PLOT = TRUE).

margins

Character; margins for the bivariate copula contour plot. Possible margins are:
"norm" = standard normal margins (default)
"t" = Student t margins with degrees of freedom as specified by margins.par
"gamma" = Gamma margins with shape and scale as specified by margins.par
"exp" = Exponential margins with rate as specified by margins.par
"unif" = uniform margins

margins.par

Parameter(s) of the distribution of the margins if necessary (default: margins.par = 0), i.e.,

  • a positive real number for the degrees of freedom of Student t margins (see dt()),

  • a 2-dimensional vector of positive real numbers for the shape and scale parameters of Gamma margins (see dgamma()),

  • a positive real number for the rate parameter of exponential margins (see dexp()).

xylim

A 2-dimensional vector of the x- and y-limits. By default (xylim = NA) standard limits for the selected margins are used.

obj

BiCop object containing the family and parameter specification.

...

Additional plot arguments.

Value

x

A vector of length size with the x-values of the kernel density estimator with Gaussian kernel if the empirical contour plot is chosen and a sequence of values in xylim if the theoretical contour plot is chosen.

y

A vector of length size with the y-values of the kernel density estimator with Gaussian kernel if the empirical contour plot is chosen and a sequence of values in xylim if the theoretical contour plot is chosen.

z

A matrix of dimension size with the values of the density of the meta distribution with chosen margins (see margins and margins.par) evaluated at the grid points given by x and y.

Note

The combination family = 0 (independence copula) and margins = "unif" (uniform margins) is not possible because all z-values are equal.

Author(s)

Ulf Schepsmeier, Alexander Bauer

See Also

BiCopChiPlot(), BiCopKPlot(), BiCopLambda()

Examples

## meta Clayton distribution  with Gaussian margins
cop <- BiCop(family = 1, tau = 0.5)
BiCopMetaContour(obj = cop, main = "Clayton - normal margins")
# better:
contour(cop, main = "Clayton - normal margins")

## empirical contour plot with standard normal margins
dat <- BiCopSim(1000, cop)
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp",
                 main = "empirical - normal margins")
# better:
BiCopKDE(dat[, 1], dat[, 2],
        main = "empirical - normal margins")

## empirical contour plot with exponential margins
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2,
                 main = "empirical - exponential margins",
                 margins = "exp", margins.par = 1)
# better:
BiCopKDE(dat[, 1], dat[, 2],
         main = "empirical - exponential margins",
         margins = "exp")

Bivariate Copula Family Names

Description

This function transforms the bivariate copula family number into its character expression and vice versa.

Usage

BiCopName(family, short = TRUE)

Arguments

family

Bivariate copula family, either its number or its character expression (see table below).

No. Short name Long name
0 "I" "Independence"
1 "N" "Gaussian"
2 "t" "t"
3 "C" "Clayton"
4 "G" "Gumbel"
5 "F" "Frank"
6 "J" "Joe"
7 "BB1" "BB1"
8 "BB6" "BB6"
9 "BB7" "BB7"
10 "BB8" "Frank-Joe"
13 "SC" "Survival Clayton"
14 "SG" "Survival Gumbel"
16 "SJ" "Survival Joe"
17 "SBB1" "Survival BB1"
18 "SBB6" "Survival BB6"
19 "SBB7" "Survival BB7"
20 "SBB8" "Survival BB8"
23 "C90" "Rotated Clayton 90 degrees"
24 "G90" "Rotated Gumbel 90 degrees"
26 "J90" "Rotated Joe 90 degrees"
27 "BB1_90" "Rotated BB1 90 degrees"
28 "BB6_90" "Rotated BB6 90 degrees"
29 "BB7_90" "Rotated BB7 90 degrees"
30 "BB8_90" "Rotated Frank-Joe 90 degrees"
33 "C270" "Rotated Clayton 270 degrees"
34 "G270" "Rotated Gumbel 270 degrees"
36 "J270" "Rotated Joe 270 degrees"
37 "BB1_270" "Rotated BB1 270 degrees"
38 "BB6_270" "Rotated BB6 270 degrees"
39 "BB7_270" "Rotated BB7 270 degrees"
40 "BB8_270" "Rotated Frank-Joe 270 degrees"
104 "Tawn" "Tawn type 1"
114 "Tawn180" "Rotated Tawn type 1 180 degrees"
124 "Tawn90" "Rotated Tawn type 1 90 degrees"
134 "Tawn270" "Rotated Tawn type 1 270 degrees"
204 "Tawn2" "Tawn type 2"
214 "Tawn2_180" "Rotated Tawn type 2 180 degrees"
224 "Tawn2_90" "Rotated Tawn type 2 90 degrees"
234 "Tawn2_270" "Rotated Tawn type 2 270 degrees"
short

Logical; if the number of a bivariate copula family is used and short = TRUE (default), a short version of the corresponding character expression is returned, otherwise the long version.

Value

The transformed bivariate copula family (see table above).

Author(s)

Ulf Schepsmeier

See Also

RVineTreePlot()

Examples

## family number to character expression
family <- 1
BiCopName(family, short = TRUE)	 # short version
BiCopName(family, short = FALSE)	 # long version

## family character expression (short version) to number
family <- "C"
BiCopName(family)	# as number

## family character expression (long version) to number
family <- "Clayton"
BiCopName(family)	# as number

## vectors of families
BiCopName(1:10)    # as character expression
BiCopName(c("Clayton","t","J"))    # as number

Blomqvist's Beta Value of a Bivariate Copula

Description

This function computes the theoretical Blomqvist's beta value of a bivariate copula for given parameter values.

Usage

BiCopPar2Beta(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
2 = Student t copula (t-copula)
1 = Gaussian copula
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)
Note that the Student's t-copula is not allowed since the CDF of the t-copula is not implemented (see BiCopCDF()).

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for the two parameter BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas (default: par2 = 0).

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPar2Beta(obj)

can be used.

Value

Theoretical value of Blomqvist's beta corresponding to the bivariate copula family and parameter(s) par, par2.

Note

The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)

Ulf Schepsmeier

References

Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals of Mathematical Statistics, 21(4), 593-600.

Nelsen, R. (2006). An introduction to copulas. Springer

Examples

## Example 1: Gaussian copula
BiCopPar2Beta(family = 1, par = 0.7)
BiCop(1, 0.7)$beta  # alternative

## Example 2: Clayton copula
BiCopPar2Beta(family = 3, par = 2)

## Example 3: different copula families
BiCopPar2Beta(family = c(3,4,6), par = 2:4)

Tail Dependence Coefficients of a Bivariate Copula

Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

Usage

BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop object obj, the alternative version

BiCopPar2TailDep(obj)

can be used.

Value

lower

Lower tail dependence coefficient for the given bivariate copula family and parameter(s) par, par2:

λL=limu0C(u,u)u\lambda_L = \lim_{u\searrow 0}\frac{C(u,u)}{u}

upper

Upper tail dependence coefficient for the given bivariate copula family family and parameter(s) par, par2:

λU=limu112u+C(u,u)1u\lambda_U = \lim_{u\nearrow 1}\frac{1-2u+C(u,u)}{1-u}

Lower and upper tail dependence coefficients for bivariate copula families and parameters (θ\theta for one parameter families and the first parameter of the t-copula with ν\nu degrees of freedom, θ\theta and δ\delta for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

No. Lower tail dependence Upper tail dependence
1 - -
2 2tν+1(ν+11θ1+θ)2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right) 2tν+1(ν+11θ1+θ)2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)
3 21/θ2^{-1/\theta} -
4 - 221/θ2-2^{1/\theta}
5 - -
6 - 221/θ2-2^{1/\theta}
7 21/(θδ)2^{-1/(\theta\delta)} 221/δ2-2^{1/\delta}
8 - 221/(θδ)2-2^{1/(\theta\delta)}
9 21/δ2^{-1/\delta} 221/θ2-2^{1/\theta}
10 - 221/θ2-2^{1/\theta} if δ=1\delta=1 otherwise 0
13 - 21/θ2^{-1/\theta}
14 221/θ2-2^{1/\theta} -
16 221/θ2-2^{1/\theta} -
17 221/δ2-2^{1/\delta} 21/(θδ)2^{-1/(\theta\delta)}
18 221/(θδ)2-2^{1/(\theta\delta)} -
19 221/θ2-2^{1/\theta} 21/δ2^{-1/\delta}
20 221/θ2-2^{1/\theta} if δ=1\delta=1 otherwise 0 -
⁠23, 33⁠ - -
⁠24, 34⁠ - -
⁠26, 36⁠ - -
⁠27, 37⁠ - -
⁠28, 38⁠ - -
⁠29, 39⁠ - -
⁠30, 40⁠ - -
⁠104,204⁠ - δ+1(δθ+1)1/θ\delta+1-(\delta^{\theta}+1)^{1/\theta}
⁠114, 214⁠ 1+δ(δθ+1)1/θ1+\delta-(\delta^{\theta}+1)^{1/\theta} -
⁠124, 224⁠ - -
⁠134, 234⁠ - -

Note

The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)

Eike Brechmann

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCopPar2Tau()

Examples

## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep  # alternative

## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)

## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)

Kendall's Tau Value of a Bivariate Copula

Description

This function computes the theoretical Kendall's tau value of a bivariate copula for given parameter values.

Usage

BiCopPar2Tau(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family

integer; single number or vector of size m; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). Note that the degrees of freedom parameter of the t-copula does not need to be set, because the theoretical Kendall's tau value of the t-copula is independent of this choice.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPar2Tau(obj)

can be used.

Value

Theoretical value of Kendall's tau (vector) corresponding to the bivariate copula family and parameter vector (θ,δ)=(\theta, \delta) = ⁠(par, par2)⁠.

No. (family) Kendall's tau (tau)
⁠1, 2⁠ 2πarcsin(θ)\frac{2}{\pi}\arcsin(\theta)
⁠3, 13⁠ θθ+2\frac{\theta}{\theta+2}
⁠4, 14⁠ 11θ1-\frac{1}{\theta}
5 14θ+4D1(θ)θ1-\frac{4}{\theta}+4\frac{D_1(\theta)}{\theta}
with D1(θ)=0θx/θexp(x)1dxD_1(\theta)=\int_0^\theta \frac{x/\theta}{\exp(x)-1}dx (Debye function)
⁠6, 16⁠ 1+4θ201xlog(x)(1x)2(1θ)/θdx1+\frac{4}{\theta^2}\int_0^1 x\log(x)(1-x)^{2(1-\theta)/\theta}dx
⁠7, 17⁠ 12δ(θ+2)1-\frac{2}{\delta(\theta+2)}
⁠8, 18⁠ 1+401log((1t)θ+1)(1t(1t)θ+(1t)θt)/(δθ)dt1+4\int_0^1 -\log(-(1-t)^\theta+1) (1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt
⁠9, 19⁠ 1+401((1(1t)θ)δ1)/(θδ(1t)θ1(1(1t)θ)δ1)dt1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - 1) /( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt
⁠10, 20⁠ 1+401log(((1tδ)θ1)/((1δ)θ1))1+4\int_0^1 -\log \left(((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right)
(1tδ(1tδ)θ+(1tδ)θtδ)/(θδ)dt* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt
⁠23, 33⁠ θ2θ\frac{\theta}{2-\theta}
⁠24, 34⁠ 11θ-1-\frac{1}{\theta}
⁠26, 36⁠ 14θ201xlog(x)(1x)2(1+θ)/θdx-1-\frac{4}{\theta^2}\int_0^1 x\log(x)(1-x)^{-2(1+\theta)/\theta}dx
⁠27, 37⁠ 12δ(2θ)-1-\frac{2}{\delta(2-\theta)}
⁠28, 38⁠ 1401log((1t)θ+1)(1t(1t)θ+(1t)θt)/(δθ)dt-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1) (1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt
⁠29, 39⁠ 1401((1(1t)θ)δ1)/(θδ(1t)θ1(1(1t)θ)δ1)dt-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - 1) /( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt
⁠30, 40⁠ 1401log(((1+tδ)θ1)/((1+δ)θ1))-1-4\int_0^1 -\log \left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)
(1+tδ(1+tδ)θ(1+tδ)θtδ)/(θδ)dt* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt
⁠104,114⁠ 01t(1t)A(t)A(t)dt\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt
with A(t)=(1δ)t+[(δ(1t))θ+tθ]1/θA(t) = (1-\delta)t+[(\delta(1-t))^{\theta}+t^{\theta}]^{1/\theta}
⁠204,214⁠ 01t(1t)A(t)A(t)dt\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt
with A(t)=(1δ)(1t)+[(1t)θ+(δt)θ]1/θA(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}
⁠124,134⁠ 01t(1t)A(t)A(t)dt-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt
with A(t)=(1δ)t+[(δ(1t))θ+tθ]1/θA(t) = (1-\delta)t+[(\delta(1-t))^{-\theta}+t^{-\theta}]^{-1/\theta}
⁠224,234⁠ 01t(1t)A(t)A(t)dt-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt
with A(t)=(1δ)(1t)+[(1t)θ+(δt)θ]1/θA(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}

Note

The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)

Ulf Schepsmeier, Tobias Erhardt

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

BiCopTau2Par(), BiCop()

Examples

## Example 1: Gaussian copula
tau0 <- 0.5
rho <- BiCopTau2Par(family = 1, tau = tau0)
# transform back
tau <- BiCopPar2Tau(family = 1, par = rho)
tau - 2/pi*asin(rho)

## Example 2:
vpar <- seq(from = 1.1, to = 10, length.out = 100)
tauC <- BiCopPar2Tau(family = 3, par = vpar)
tauG <- BiCopPar2Tau(family = 4, par = vpar)
tauF <- BiCopPar2Tau(family = 5, par = vpar)
tauJ <- BiCopPar2Tau(family = 6, par = vpar)
plot(tauC ~ vpar, type = "l", ylim = c(0,1))
lines(tauG ~ vpar, col = 2)
lines(tauF ~ vpar, col = 3)
lines(tauJ ~ vpar, col = 4)

## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)

Density of a Bivariate Copula

Description

This function evaluates the probability density function (PDF) of a given parametric bivariate copula.

Usage

BiCopPDF(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

u1, u2

numeric vectors of equal length with values in [0,1][0,1].

family

integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size length(u1); copula parameter.

par2

numeric; single number or vector of size length(u1); second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPDF(u1, u2, obj)

can be used.

Value

A numeric vector of the bivariate copula density

  • of the copula family

  • with parameter(s) par, par2

  • evaluated at u1 and u2.

Author(s)

Eike Brechmann

See Also

BiCopCDF(), BiCopHfunc(), BiCopSim(), BiCop()

Examples

## simulate from a bivariate Student-t copula
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## evaluate the density of the bivariate t-copula
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopPDF(u1, u2, cop)

## select a bivariate copula for the simulated data
fit <- BiCopSelect(u1, u2)
summary(fit)
## and evaluate its PDF
round(BiCopPDF(u1, u2, fit), 3)

Selection and Maximum Likelihood Estimation of Bivariate Copula Families

Description

This function selects an appropriate bivariate copula family for given bivariate copula data using one of a range of methods. The corresponding parameter estimates are obtained by maximum likelihood estimation.

Usage

BiCopSelect(
  u1,
  u2,
  familyset = NA,
  selectioncrit = "AIC",
  indeptest = FALSE,
  level = 0.05,
  weights = NA,
  rotations = TRUE,
  se = FALSE,
  presel = TRUE,
  method = "mle"
)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

familyset

Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but abs(familyset) families is performed. Coding of bivariate copula families:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

selectioncrit

Character indicating the criterion for bivariate copula selection. Possible choices: selectioncrit = "AIC" (default), "BIC", or "logLik".

indeptest

Logical; whether a hypothesis test for the independence of u1 and u2 is performed before bivariate copula selection (default: indeptest = FALSE; see BiCopIndTest()). The independence copula is chosen if the null hypothesis of independence cannot be rejected.

level

Numeric; significance level of the independence test (default: level = 0.05).

weights

Numerical; weights for each observation (optional).

rotations

If TRUE, all rotations of the families in familyset are included (or subtracted).

se

Logical; whether standard error(s) of parameter estimates is/are estimated (default: se = FALSE).

presel

Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30% faster (on average), but may yield slightly worse results in few special cases.

method

indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (⁠family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34⁠ or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

Details

Copulas can be selected according to the Akaike and Bayesian Information Criteria (AIC and BIC, respectively). First all available copulas are fitted using maximum likelihood estimation. Then the criteria are computed for all available copula families (e.g., if u1 and u2 are negatively dependent, Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 and their survival copulas are not considered) and the family with the minimum value is chosen. For observations ui,j, i=1,...,N, j=1,2,u_{i,j},\ i=1,...,N,\ j=1,2, the AIC of a bivariate copula family cc with parameter(s) θ\boldsymbol{\theta} is defined as

AIC:=2i=1Nln[c(ui,1,ui,2θ)]+2k,AIC := -2 \sum_{i=1}^N \ln[c(u_{i,1},u_{i,2}|\boldsymbol{\theta})] + 2k,

where k=1k=1 for one parameter copulas and k=2k=2 for the two parameter t-, BB1, BB6, BB7 and BB8 copulas. Similarly, the BIC is given by

BIC:=2i=1Nln[c(ui,1,ui,2θ)]+ln(N)k.BIC := -2 \sum_{i=1}^N \ln[c(u_{i,1},u_{i,2}|\boldsymbol{\theta})] + \ln(N)k.

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using the AIC.

Additionally a test for independence can be performed beforehand.

Value

An object of class BiCop(), augmented with the following entries:

se, se2

standard errors for the parameter estimates (if se = TRUE,

nobs

number of observations,

logLik

log likelihood

AIC

Aikaike's Informaton Criterion,

BIC

Bayesian's Informaton Criterion,

emptau

empirical value of Kendall's tau,

p.value.indeptest

p-value of the independence test.

Note

For a comprehensive summary of the fitted model, use summary(object); to see all its contents, use str(object).

The parameters of the Student t and BB copulas are restricted (see defaults in BiCopEst() to avoid being to close to their limiting cases.

Author(s)

Eike Brechmann, Jeffrey Dissmann, Thomas Nagler

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267-281.

Brechmann, E. C. (2010). Truncated and simplified regular vines and their applications. Diploma thesis, Technische Universitaet Muenchen.
https://mediatum.ub.tum.de/?id=1079285.

Manner, H. (2007). Estimation and model selection of copulas with an application to exchange rates. METEOR research memorandum 07/056, Maastricht University.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.

See Also

BiCop(), BiCopEst(), RVineStructureSelect(), RVineCopSelect(), BiCopIndTest(),

Examples

## Example 1: Gaussian copula with large dependence parameter
par <- 0.7
fam <- 1
dat1 <- BiCopSim(500, fam, par)
# select the bivariate copula family and estimate the parameter(s)
cop1 <- BiCopSelect(dat1[, 1], dat1[, 2], familyset = 1:10,
                    indeptest = FALSE, level = 0.05)
cop1  # short overview
summary(cop1)  # comprehensive overview
str(cop1)  # see all contents of the object

## Example 2: Gaussian copula with small dependence parameter
par <- 0.01
fam <- 1
dat2 <- BiCopSim(500, fam, par)
# select the bivariate copula family and estimate the parameter(s)
cop2 <- BiCopSelect(dat2[, 1], dat2[, 2], familyset = 0:10,
                    indeptest = TRUE, level = 0.05)
summary(cop2)

## Example 3: empirical data
data(daxreturns)
cop3 <- BiCopSelect(daxreturns[, 1], daxreturns[, 4], familyset = 0:10)
summary(cop3)

Simulation from a Bivariate Copula

Description

This function simulates from a given parametric bivariate copula.

Usage

BiCopSim(N, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

N

Number of bivariate observations simulated.

family

integer; single number or vector of size N; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size N; copula parameter.

par2

numeric; single number or vector of size N; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be a positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopSim(N, obj)

can be used.

Value

An N x 2 matrix of data simulated from the bivariate copula with family and parameter(s) par, par2.

Author(s)

Ulf Schepsmeier

See Also

BiCop(), RVineSim()

Examples

# simulate from a bivariate t-copula
simdata <- BiCopSim(100, 2, -0.7, par2 = 4)

# or alternatively
obj <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata2 <- BiCopSim(100, obj)

Parameter of a Bivariate Copula for a given Kendall's Tau Value

Description

This function computes the parameter of a (one parameter) bivariate copula for a given value of Kendall's tau.

Usage

BiCopTau2Par(family, tau, check.taus = TRUE)

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (Here only the first parameter can be computed)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
Note that (with exception of the t-copula) two parameter bivariate copula families cannot be used.

tau

numeric; single number or vector of size n; Kendall's tau value (vector with elements in [1,1][-1,1]).

check.taus

logical; default is TRUE; if FALSE, checks for family/tau-consistency are omitted (should only be used with care).

Value

Parameter (vector) corresponding to the bivariate copula family and the value(s) of Kendall's tau (τ\tau).

No. (family) Parameter (par)
⁠1, 2⁠ sin(τπ2)\sin(\tau \frac{\pi}{2})
⁠3, 13⁠ 2τ1τ2\frac{\tau}{1-\tau}
⁠4, 14⁠ 11τ\frac{1}{1-\tau}
5 no closed form expression (numerical inversion)
⁠6, 16⁠ no closed form expression (numerical inversion)
⁠23, 33⁠ 2τ1+τ2\frac{\tau}{1+\tau}
⁠24, 34⁠ 11+τ-\frac{1}{1+\tau}
⁠26, 36⁠ no closed form expression (numerical inversion)

Note

The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)

Jakob Stoeber, Eike Brechmann, Tobias Erhardt

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

BiCopPar2Tau()

Examples

## Example 1: Gaussian copula
tau0 <- 0.5
rho <- BiCopTau2Par(family = 1, tau = tau0)
BiCop(1, tau = tau0)$par  # alternative

## Example 2:
vtau <- seq(from = 0.1, to = 0.8, length.out = 100)
thetaC <- BiCopTau2Par(family = 3, tau = vtau)
thetaG <- BiCopTau2Par(family = 4, tau = vtau)
thetaF <- BiCopTau2Par(family = 5, tau = vtau)
thetaJ <- BiCopTau2Par(family = 6, tau = vtau)
plot(thetaC ~ vtau, type = "l", ylim = range(thetaF))
lines(thetaG ~ vtau, col = 2)
lines(thetaF ~ vtau, col = 3)
lines(thetaJ ~ vtau, col = 4)

## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)

Scoring Goodness-of-Fit Test based on Vuong And Clarke Tests for Bivariate Copula Data

Description

Based on the Vuong and Clarke tests this function computes a goodness-of-fit score for each bivariate copula family under consideration. For each possible pair of copula families the Vuong and the Clarke tests decides which of the two families fits the given data best and assigns a score—pro or contra a copula family—according to this decision.

Usage

BiCopVuongClarke(
  u1,
  u2,
  familyset = NA,
  correction = FALSE,
  level = 0.05,
  rotations = TRUE
)

Arguments

u1, u2

Data vectors of equal length with values in [0,1][0,1].

familyset

An integer vector of bivariate copula families under consideration, i.e., which are compared in the goodness-of-fit test. If familyset = NA (default), all possible families are compared. Possible families are:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

correction

Correction for the number of parameters. Possible choices: correction = FALSE (no correction; default), "Akaike" and "Schwarz".

level

Numerical; significance level of the tests (default: level = 0.05).

rotations

If TRUE, all rotations of the families in familyset are included (or subtracted).

Details

The Vuong as well as the Clarke test compare two models against each other and based on their null hypothesis, allow for a statistically significant decision among the two models (see the documentations of RVineVuongTest() and RVineClarkeTest() for descriptions of the two tests). In the goodness-of-fit test proposed by Belgorodski (2010) this is used for bivariate copula selection. It compares a model 0 to all other possible models under consideration. If model 0 is favored over another model, a score of "+1" is assigned and similarly a score of "-1" if the other model is determined to be superior. No score is assigned, if the respective test cannot discriminate between two models. Both tests can be corrected for the numbers of parameters used in the copulas. Either no correction (correction = FALSE), the Akaike correction (correction = "Akaike") or the parsimonious Schwarz correction (correction = "Schwarz") can be used.

The models compared here are bivariate parametric copulas and we would like to determine which family fits the data better than the other families. E.g., if we would like to test the hypothesis that the bivariate Gaussian copula fits the data best, then we compare the Gaussian copula against all other copulas under consideration. In doing so, we investigate the null hypothesis "The Gaussian copula fits the data better than all other copulas under consideration", which corresponds to k1k-1 times the hypothesis "The Gaussian copula CjC_j fits the data better than copula CiC_i" for all i=1,...,k,iji=1,...,k, i\neq j, where kk is the number of bivariate copula families under consideration (length of familyset). This procedure is done not only for one family but for all families under consideration, i.e., two scores, one based on the Vuong and one based on the Clarke test, are returned for each bivariate copula family. If used as a goodness-of-fit procedure, the family with the highest score should be selected.

For more and detailed information about the goodness-of-fit test see Belgorodski (2010).

Value

A matrix with Vuong test scores in the first and Clarke test scores in the second row. Column names correspond to bivariate copula families (see above).

Author(s)

Ulf Schepsmeier, Eike Brechmann, Natalia Belgorodski

References

Belgorodski, N. (2010) Selecting pair-copula families for regular vines with application to the multivariate analysis of European stock market indices Diploma thesis, Technische Universitaet Muenchen. https://mediatum.ub.tum.de/?id=1079284.

Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis, 15, 347-363.

Vuong, Q. H. (1989). Ratio tests for model selection and non-nested hypotheses. Econometrica 57 (2), 307-333.

See Also

BiCopGofTest(), RVineVuongTest(), RVineClarkeTest(), BiCopSelect()

Examples

# simulate from a t-copula
dat <- BiCopSim(500, 2, 0.7, 5)


# apply the test for families 1-6
BiCopVuongClarke(dat[,1], dat[,2], familyset = 1:6)

Transform C-Vine to R-Vine Structure

Description

This function transforms a C-vine structure from the package CDVine to the corresponding R-vine structure.

Usage

C2RVine(order, family, par, par2 = rep(0, length(family)))

Arguments

order

A d-dimensional vector specifying the order of the root nodes in the C-vine.

family

A d*(d-1)/2 vector of pair-copula families with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

A d*(d-1)/2 vector of pair-copula parameters.

par2

A d*(d-1)/2 vector of second pair-copula parameters (optional; default:
par2 = rep(0,length(family))), necessary for the t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas.

Value

An RVineMatrix() object.

Author(s)

Ulf Schepsmeier, Eike Brechmann

See Also

RVineMatrix(), D2RVine()

Examples

# set up C-vine copula model with mixed pair-copulas
d <- 4
dd <- d*(d-1)/2
order <- 1:d
family <- c(1, 2, 3, 4, 7, 3)
par <- c(0.5, 0.4, 2, 1.5, 1.2, 1.5)
par2 <- c(0, 5, 0, 0, 2, 0)

# transform to R-vine matrix notation
RVM <- C2RVine(order, family, par, par2)

Plotting RVineMatrix objects.

Description

There are two plotting generics for RVineMatrix objects. plot.RVineMatrix plots one or all trees of a given R-vine copula model. Edges can be labeled with information about the corresponding pair-copula. contour.RVineMatrix produces a matrix of contour plots (using plot.BiCop()).

Usage

## S3 method for class 'RVineMatrix'
contour(x, tree = "ALL", xylim = NULL, cex.nums = 1, data = NULL, ...)

## S3 method for class 'RVineMatrix'
plot(
  x,
  tree = "ALL",
  type = 0,
  edge.labels = NULL,
  legend.pos = "bottomleft",
  interactive = FALSE,
  ...
)

Arguments

x

RVineMatrix object.

tree

"ALL" or integer vector; specifies which trees are plotted.

xylim

numeric vector of length 2; sets xlim and ylim for the contours

cex.nums

numeric; expansion factor for font of the numbers.

data

a data matrix for creating kernel density contours of each pair.

...

Arguments passed to network::plot.network() or plot.BiCop() respectively.

type

integer; specifies how to make use of variable names:
0 = variable names are ignored,
1 = variable names are used to annotate vertices,
2 = uses numbers in plot and adds a legend for variable names.

edge.labels

character; either a vector of edge labels or one of the following:
"family" = pair-copula family abbreviation (see BiCopName()),
"par" = pair-copula parameters,
"tau" = pair-copula Kendall's tau (by conversion of parameters)
"family-par" = pair-copula family and parameters
"family-tau" = pair-copula family and Kendall's tau.

legend.pos

the x argument for graphics::legend().

interactive

logical; if TRUE, the user is asked to adjust the positioning of vertices with his mouse.

Details

If you want the contour boxes to be perfect squares, the plot height should be 1.25/length(tree)*(d - min(tree)) times the plot width.

Author(s)

Thomas Nagler, Nicole Barthel

See Also

RVineMatrix(), network::plot.network(), plot.BiCop(), BiCopName(), graphics::legend()

Examples

## build vine model
strucmat <- matrix(c(3,   1, 2, 0, 2, 1, 0, 0, 1), 3, 3)
fammat   <- matrix(c(0,   1, 6, 0, 0, 3, 0, 0, 0), 3, 3)
parmat   <- matrix(c(0, 0.3, 3, 0, 0, 1, 0, 0, 0), 3, 3)
par2mat  <- matrix(c(0,   0, 0, 0, 0, 0, 0, 0, 0), 3, 3)
RVM  <- RVineMatrix(strucmat, fammat, parmat, par2mat)

# plot trees
## Not run: plot(RVM)

# show contour plots
contour(RVM)

Transform D-Vine to R-Vine Structure

Description

This function transforms a D-vine structure from the package CDVine to the corresponding R-vine structure.

Usage

D2RVine(order, family, par, par2 = rep(0, length(family)))

Arguments

order

A d-dimensional vector specifying the order of the nodes in the D-vine.

family

A d*(d-1)/2 vector of pair-copula families with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

A d*(d-1)/2 vector of pair-copula parameters.

par2

A d*(d-1)/2 vector of second pair-copula parameters (optional; default:
par2 = rep(0,length(family))), necessary for the t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas.

Value

An RVineMatrix() object.

Author(s)

Ulf Schepsmeier

See Also

RVineMatrix(), C2RVine()

Examples

# set up D-vine copula model with mixed pair-copulas
d <- 4
dd <- d*(d-1)/2
order <- 1:d
family <- c(1, 2, 3, 4, 7, 3)
par <- c(0.5, 0.4, 2, 1.5, 1.2, 1.5)
par2 <- c(0, 5, 0, 0, 2, 0)

# transform to R-vine matrix notation
RVM <- D2RVine(order, family, par, par2)

Major German Stocks

Description

This data set contains transformed standardized residuals of daily log returns of 15 major German stocks represented in the index DAX observed from January 2005 to August 2009. Each time series is filtered using a GARCH(1,1) model with Student t innovations.

Format

A data frame with 1158 observations on 15 variables. Column names correspond to ticker symbols of the stocks.

Source

Yahoo! Finance

See Also

RVineStructureSelect()

Examples

# load the data set
data(daxreturns)

# compute the empirical Kendall's tau matrix
TauMatrix(daxreturns)

Corrected Empirical CDF

Description

The empirical CDF with tail correction, ensuring that its output is never 0 or 1.

Usage

EmpCDF(x)

Arguments

x

numeric vector of observations

Details

The corrected empirical CDF is defined as

Fn(x)=1n+1min{1,i=1n1(Xix)}F_n(x) = \frac{1}{n + 1} \min\biggl\{1, \sum_{i = 1}^n 1(X_i \le x)\biggr\}

Value

A function with signature ⁠function(x)⁠ that returns Fn(x)F_n(x).

Examples

# fit ECDF on simulated data
x <- rnorm(100)
cdf <- EmpCDF(x)

# output is bounded away from 0 and 1
cdf(-50)
cdf(50)

Pairs Plot of Copula Data

Description

This function provides pair plots for copula data. Using default setting it plots bivariate contour plots on the lower panel, scatter plots and correlations on the upper panel and histograms on the diagonal panel.

Usage

## S3 method for class 'copuladata'
pairs(
  x,
  labels = names(x),
  ...,
  lower.panel = lp.copuladata,
  upper.panel = up.copuladata,
  diag.panel = dp.copuladata,
  label.pos = 0.85,
  cex.labels = 1,
  gap = 0,
  method = "kendall",
  ccols = terrain.colors(11),
  margins = "norm"
)

Arguments

x

copuladata object.

labels

variable names/labels.

...

other graphical parameters (see graphics::par()) or options passed to BiCopKDE().

lower.panel

panel function to be used on the lower diagonal panels (if not supplied, a default function is used)

upper.panel

panel function to be used on the upper diagonal panels (if not supplied, a default function is used)

diag.panel

panel function to be used on the diagonal panels (if not supplied, a default function is used)

label.pos

y position of labels in the diagonal panel; default: label.pos = 0.85.

cex.labels

magnification to be used for the labels of the diagonal panel; default: cex.labels = 1.

gap

distance between subplots, in margin lines; default: gap = 0.

method

a character string indicating which correlation coefficients are computed. One of "pearson", "kendall" (default), or "spearman"

ccols

color to be used for the contour plots; default: ccols = terrain.colors(30).

margins

character; margins for the contour plots. Options are:
"unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins.

Note

If the default panel functions are used

  • col changes only the color of the points in the scatter plot (upper.panel)

  • cex changes only the magnification of the points in the scatter plot (upper.panel)

Author(s)

Tobias Erhardt

See Also

graphics::pairs(), as.copuladata(), BiCopKDE()

Examples

data(daxreturns)

data <- as.copuladata(daxreturns)
sel <- c(4,5,14,15)

## pairs plot with default settings
pairs(data[sel])

## pairs plot with custom settings
nlevels <- 20
pairs(data[sel], cex = 2, pch = 1, col = "black",
      diag.panel = NULL, label.pos = 0.5,
      cex.labels = 2.5, gap = 1,
      method = "pearson", ccols = heat.colors(nlevels),
      margins = "flexp")

## pairs plot with own panel functions
up <- function(x, y) {
  # upper panel: empirical contour plot
  op <- par(usr = c(-3, 3, -3, 3), new = TRUE)
  BiCopKDE(x, y,
           levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
           margins = "exp",
           axes = FALSE)
  on.exit(par(op))
}

lp <- function(x, y) {
  # lower panel: scatter plot (copula data) and correlation
  op <- par(usr = c(0, 1, 0, 1), new = TRUE)
  points(x, y, pch = 1, col = "black")
  r <- cor(x, y, method = "spearman") # Spearman's rho
  txt <- format(x = r, digits = 3, nsmall = 3)[1]
  text(x = 0.5, y = 0.5, labels = txt, cex = 1 + abs(r) * 2, col = "blue")
  on.exit(par(op))
}

dp <- function(x) {
  # diagonal panel: histograms (copula data)
  op <- par(usr = c(0, 1, 0, 1.5), new = TRUE)
  hist(x, freq = FALSE, add = TRUE, col = "brown", border = "black", main = "")
  abline(h = 1, col = "black", lty = 2)
  on.exit(par(op))
}

nlevels <- 20
pairs(data[sel],
      lower.panel = lp, upper.panel = up, diag.panel = dp, gap = 0.5)

Plotting tools for BiCop objects

Description

There are several options for plotting BiCop objects. The density of a bivariate copula density can be visualized as surface/perspective or contour plot. Optionally, the density can be coupled with standard normal margins (default for contour plots). Furthermore, a lambda-plot is available (cf., BiCopLambda()).

Usage

## S3 method for class 'BiCop'
plot(x, type = "surface", margins, size, ...)

## S3 method for class 'BiCop'
contour(x, margins = "norm", size = 100L, ...)

Arguments

x

⁠BiCop object.⁠

type

plot type; either "surface", "contour", or "lambda" (partial matching is activated); the latter is only implemented for a few families (c.f., BiCopLambda()).

margins

only relevant for types "contour" and "surface"; options are: "unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins. Default is "norm" for type = "contour", and "unif" for type = "surface".

size

integer; only relevant for types "contour" and "surface"; the plot is based on values on a sizexsizesize x size grid; default is 100 for type = "contour", and 25 for type = "surface".

...

optional arguments passed to contour() or lattice::wireframe().

Author(s)

Thomas Nagler

See Also

BiCop(), contour(), lattice::wireframe()

Examples

## construct BiCop object for a Tawn copula
obj <- BiCop(family = 104, par = 2.5, par2 = 0.4)

## plots
plot(obj)  # surface plot of copula density
contour(obj)  # contour plot with standard normal margins
contour(obj, margins = "unif")  # contour plot of copula density

Pseudo-Observations

Description

Compute the pseudo-observations for the given data matrix.

Usage

pobs(
  x,
  na.last = "keep",
  ties.method = eval(formals(rank)$ties.method),
  lower.tail = TRUE
)

Arguments

x

n×dn\times d-matrix of random variates to be converted to pseudo-observations.

na.last, ties.method

are passed to rank(); see there.

lower.tail

logical() which, if FALSE, returns the pseudo-observations when applying the empirical marginal survival functions.

Details

Given nn realizations xi=(xi1,,xid)T\bm{x}_i=(x_{i1},\dots,x_{id})^T, i{1,,n}i\in\{1,\dots,n\} of a random vector X\bm{X}, the pseudo-observations are defined via uij=rij/(n+1)u_{ij}=r_{ij}/(n+1) for i{1,,n}i\in\{1,\dots,n\} and j{1,,d}j\in\{1,\dots,d\}, where rijr_{ij} denotes the rank of xijx_{ij} among all xkjx_{kj}, k{1,,n}k\in\{1,\dots,n\}. The pseudo-observations can thus also be computed by component-wise applying the empirical distribution functions to the data and scaling the result by n/(n+1)n/(n+1). This asymptotically negligible scaling factor is used to force the variates to fall inside the open unit hypercube, for example, to avoid problems with density evaluation at the boundaries. Note that pobs(, lower.tail=FALSE) simply returns 1-pobs().

Value

matrix of the same dimensions as x containing the pseudo-observations.

Note

This function is adapted from the copula package.

Author(s)

Marius Hofert, Thomas Nagler

Examples

## Simple definition of the function:
pobs

## simulate data from a multivariate normal distribution
library(mvtnorm)
set.seed(123)
Sigma <- matrix(c(2, 1, -0.2, 1, 1, 0.3, -0.2, 0.3, 0.5), 3, 3)
mu <- c(-3, 2, 1)
dat <- rmvnorm(500, sigma = Sigma)
pairs(dat)  # plot observations

## compute pseudo-observations for copula inference
udat <- pobs(dat)
pairs(udat)
# estimate vine copula model
fit <- RVineStructureSelect(udat, familyset = c(1, 2))

AIC and BIC of an R-Vine Copula Model

Description

These functions calculate the Akaike and Bayesian Information criteria of a d-dimensional R-vine copula model for a given copula data set.

Usage

RVineAIC(data, RVM, par = RVM$par, par2 = RVM$par2)

RVineBIC(data, RVM, par = RVM$par, par2 = RVM$par2)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters.

par

A d x d matrix with the pair-copula parameters (optional; default: par = RVM$par).

par2

A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: par2 = RVM$par2).

Details

If kk denotes the number of parameters of an R-vine copula model with log-likelihood lRVinel_{RVine} and parameter set θ\boldsymbol{\theta}, then the Akaike Information Criterion (AIC) by Akaike (1973) is defined as

AIC:=2lRVine(θu)+2k,AIC := -2 l_{RVine}\left(\boldsymbol{\theta}|\boldsymbol{u}\right) + 2 k,

for observations u=(u1,...,uN)\boldsymbol{u}=(\boldsymbol{u}_1^\prime,..., \boldsymbol{u}_N^\prime)^\prime.

Similarly, the Bayesian Information Criterion (BIC) by Schwarz (1978) is given by

BIC:=2lRVine(θu)+log(N)k.BIC := -2 l_{RVine}\left(\boldsymbol{\theta}|\boldsymbol{u}\right) + \log(N) k.

Value

AIC, BIC

The computed AIC or BIC value, respectively.

pair.AIC, pair.BIC

A d x d matrix of individual contributions to the AIC or BIC value for each pair-copula, respectively. Note: AIC = sum(pair.AIC) and similarly BIC = sum(pair.BIC).

Author(s)

Eike Brechmann

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267-281.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.

See Also

RVineLogLik(), RVineVuongTest(), RVineClarkeTest()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family, par = par, par2 = par2,
                   names=c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300,RVM)

# compute AIC and BIC
RVineAIC(simdata, RVM)
RVineBIC(simdata, RVM)

CDF of an R-Vine Copula Model

Description

This function calculates the cumulative distribution function of a d-dimensional R-vine copula.

Usage

RVineCDF(data, RVM, N = 1000)

Arguments

data

An N x d data matrix that specifies where the CDF shall be evaluated.

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters.

N

Number of points to simulate for the Monte Carlo integration (default: n = 1000).

Details

The cumulative distribution function of a dd-dimensional R-vine copula cannot be expressed in closed form. However, it can be calculated by numerical integration. The function uses the RVineSim() function to simulate a grid of points and then computes the CDF via Monte Carlo.

Value

A vector of length N with the CDF values.

Author(s)

Thibault Vatter

See Also

RVineSim(), RVineMatrix(), RVineLogLik(), RVinePDF()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(
  5, 2, 3, 1, 4,
  0, 2, 3, 4, 1,
  0, 0, 3, 4, 1,
  0, 0, 0, 4, 1,
  0, 0, 0, 0, 1
)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(
  0, 1, 3, 4, 4,
  0, 0, 3, 4, 1,
  0, 0, 0, 4, 1,
  0, 0, 0, 0, 3,
  0, 0, 0, 0, 0
)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(
  0, 0.2, 0.9, 1.5, 3.9,
  0, 0, 1.1, 1.6, 0.9,
  0, 0, 0, 1.9, 0.5,
  0, 0, 0, 0, 4.8,
  0, 0, 0, 0, 0
)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(
  Matrix = Matrix, family = family,
  par = par, par2 = par2,
  names = c("V1", "V2", "V3", "V4", "V5")
)

# compute the CDF at (0.1, 0.2, 0.3, 0.4, 0.5)
RVineCDF(c(0.1, 0.2, 0.3, 0.4, 0.5), RVM)

Clarke Test Comparing Two R-Vine Copula Models

Description

This function performs a Clarke test between two d-dimensional R-vine copula models as specified by their RVineMatrix() objects.

Usage

RVineClarkeTest(data, RVM1, RVM2)

Arguments

data

An N x d data matrix (with uniform margins).

RVM1, RVM2

RVineMatrix() objects of models 1 and 2.

Details

The test proposed by Clarke (2007) allows to compare non-nested models. For this let c1c_1 and c2c_2 be two competing vine copulas in terms of their densities and with estimated parameter sets θ^1\hat{\boldsymbol{\theta}}_1 and θ^2\hat{\boldsymbol{\theta}}_2. The null hypothesis of statistical indistinguishability of the two models is

H0:P(mi>0)=0.5 i=1,..,N,H_0: P(m_i > 0) = 0.5\ \forall i=1,..,N,

where mi:=log[c1(uiθ^1)c2(uiθ^2)]m_i:=\log\left[\frac{c_1(\boldsymbol{u}_i|\hat{\boldsymbol{\theta}}_1)}{c_2(\boldsymbol{u}_i|\hat{\boldsymbol{\theta}}_2)}\right] for observations ui, i=1,...,N\boldsymbol{u}_i,\ i=1,...,N.

Since under statistical equivalence of the two models the log likelihood ratios of the single observations are uniformly distributed around zero and in expectation 50%50\% of the log likelihood ratios greater than zero, the test statistic

statistic:=B=i=1N1(0,)(mi),\texttt{statistic} := B = \sum_{i=1}^N \mathbf{1}_{(0,\infty)}(m_i),

where 1\mathbf{1} is the indicator function, is distributed Binomial with parameters NN and p=0.5p=0.5, and critical values can easily be obtained. Model 1 is interpreted as statistically equivalent to model 2 if BB is not significantly different from the expected value Np=N2Np = \frac{N}{2}.

Like AIC and BIC, the Clarke test statistic may be corrected for the number of parameters used in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.

Value

statistic, statistic.Akaike, statistic.Schwarz

Test statistics without correction, with Akaike correction and with Schwarz correction.

p.value, p.value.Akaike, p.value.Schwarz

P-values of tests without correction, with Akaike correction and with Schwarz correction.

Author(s)

Jeffrey Dissmann, Eike Brechmann

References

Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis, 15, 347-363.

See Also

RVineVuongTest(), RVineAIC(), RVineBIC()

Examples

# vine structure selection time-consuming (~ 20 sec)

# load data set
data(daxreturns)


# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))
RVM$Matrix
RVM$par
RVM$par2

# select the C-vine structure, families and parameters
CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine")
CVM$Matrix
CVM$par
CVM$par2

# compare the two models based on the data
clarke <- RVineClarkeTest(daxreturns[,1:5], RVM, CVM)
clarke$statistic
clarke$statistic.Schwarz
clarke$p.value
clarke$p.value.Schwarz

Sequential Pair-Copula Selection and Estimation for R-Vine Copula Models

Description

This function fits a R-vine copula model to a d-dimensional copula data set. Pair-copula families are selected using BiCopSelect() and estimated sequentially.

Usage

RVineCopSelect(
  data,
  familyset = NA,
  Matrix,
  selectioncrit = "AIC",
  indeptest = FALSE,
  level = 0.05,
  trunclevel = NA,
  weights = NA,
  rotations = TRUE,
  se = FALSE,
  presel = TRUE,
  method = "mle",
  cores = 1
)

Arguments

data

N x d data matrix (with uniform margins).

familyset

integer vector of pair-copula families to select from. The vector has to include at least one pair-copula family that allows for positive and one that allows for negative dependence. Not listed copula families might be included to better handle limit cases. If familyset = NA (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but abs(familyset) is performed. Coding of pair copula families is the same as in BiCop().

Matrix

lower or upper triangular d x d matrix that defines the R-vine tree structure.

selectioncrit

Character indicating the criterion for pair-copula selection. Possible choices: selectioncrit = "AIC" (default), "BIC", or "logLik" (see BiCopSelect()).

indeptest

Logical; whether a hypothesis test for the independence of u1 and u2 is performed before bivariate copula selection (default: indeptest = FALSE; see BiCopIndTest()). The independence copula is chosen for a (conditional) pair if the null hypothesis of independence cannot be rejected.

level

numeric; significance level of the independence test (default: level = 0.05).

trunclevel

integer; level of truncation.

weights

Numerical; weights for each observation (optional).

rotations

logical; if TRUE, all rotations of the families in familyset are included.

se

Logical; whether standard errors are estimated (default: se = FALSE).

presel

Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30\ (on average), but may yield slightly worse results in few special cases.

method

indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (⁠family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34⁠ or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

cores

integer; if cores > 1, estimation will be parallelized within each tree (using parallel::parLapply()). Note that parallelization causes substantial overhead and may be slower than single-threaded computation when dimension, sample size, or family set are small or method = "itau".

Details

R-vine copula models with unknown structure can be specified using RVineStructureSelect().

Value

An RVineMatrix() object with the selected families (RVM$family) as well as sequentially estimated parameters stored in RVM$par and RVM$par2. The object is augmented by the following information about the fit:

se, se2

standard errors for the parameter estimates (if se = TRUE; note that these are only approximate since they do not account for the sequential nature of the estimation,

nobs

number of observations,

logLik, pair.logLik

log likelihood (overall and pairwise)

AIC, pair.AIC

Aikaike's Informaton Criterion (overall and pairwise),

BIC, pair.BIC

Bayesian's Informaton Criterion (overall and pairwise),

emptau

matrix of empirical values of Kendall's tau,

p.value.indeptest

matrix of p-values of the independence test.

#'

Note

For a comprehensive summary of the vine copula model, use summary(object); to see all its contents, use str(object).

Author(s)

Eike Brechmann, Thomas Nagler

References

Brechmann, E. C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40 (1), 68-85.

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

RVineMatrix(), BiCop(), BiCopSelect(), plot.RVineMatrix(), contour.RVineMatrix()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

## define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

## simulate a sample of size 500 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(500, RVM)

## determine the pair-copula families and parameters
RVM1 <- RVineCopSelect(simdata, familyset = c(1, 3, 4, 5 ,6), Matrix)

## see the object's content or a summary
str(RVM1)
summary(RVM1)

## inspect the fitted model using plots
## Not run: plot(RVM1)  # tree structure

contour(RVM1)  # contour plots of all pair-copulas

(Partial) Correlations for R-Vine Copula Models

Description

Correlations to partial correlations and vice versa for R-vines with independence, Gaussian and t-copulas.

Usage

RVineCor2pcor(RVM, corMat)

RVinePcor2cor(RVM)

Arguments

RVM

RVineMatrix() defining only the R-vine structure for Cor2pcor and providing as well the partial correlations for Pcor2cor.

corMat

correlation matrix

Value

RVM

RVineMatrix with transformed partial correlations (for Cor2pcor)

cor

correlation matrix (for Pcor2cor)

Note

The behavior of RVinePcor2ccor differs from older versions (<= 1.4). The RVM object is now normalized such that the order of the returned correlation matrix conforms with the correlation matrix of the data. If RVM$names are non-default, the initial ordering of the variables cannot be traced back and the matrix has to be interpreted as indicated by the row- and column names.

Examples

## create RVineMatrix-object for Gaussian vine
Matrix <- matrix(c(1, 3, 4, 2,
                   0, 3, 4, 2,
                   0, 0, 4, 2,
                   0, 0, 0, 2), 4, 4)
family <- matrix(c(0, 1, 1, 1,
                   0, 0, 1, 1,
                   0, 0, 0, 1,
                   0, 0, 0, 0), 4, 4)
par <- matrix(c(0, 0.2,   0, 0.6,
                0,   0, 0.2, 0.6,
                0,   0,   0, 0.6,
                0,   0,   0,   0), 4, 4)
RVM <- RVineMatrix(Matrix, family, par)

## calculate correlation matrix corresponding to the R-Vine model
newcor <- RVinePcor2cor(RVM)

## transform back to partial correlations
RVineCor2pcor(RVM, newcor)$par

## check if they are equal
all.equal(RVM$par, RVineCor2pcor(RVM, newcor)$par)

Goodness-of-Fit Tests for R-Vine Copula Models

Description

This function performs a goodness-of-fit test for R-vine copula models. There are 15 different goodness-of-fit tests implemented, described in Schepsmeier (2013).

Usage

RVineGofTest(
  data,
  RVM,
  method = "White",
  statistic = "CvM",
  B = 200,
  alpha = 2
)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

RVineMatrix() objects of the R-vine model under the null hypothesis.
Only the following copula families are allowed in RVM$family due to restrictions in RVineGrad() and RVineHessian()
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

method

A string indicating the goodness-of-fit method:
"White" = goodness-of-fit test based on White's information matrix equality (default)
"IR" = goodness-of-fit test based on the information ratio
"Breymann" = goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Breymann et al. (2003).
"Berg" = goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Berg and Bakken (2007).
"Berg2" = second goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Berg and Bakken (2007).
"ECP" = goodness-of-fit test based on the empirical copula process (ECP)
"ECP2" = goodness-of-fit test based on the combination of probability integral transform (PIT) and empirical copula process (ECP) (Genest et al. 2009)

statistic

A string indicating the goodness-of-fit test statistic type:
"CvM" = Cramer-von Mises test statistic (univariate for "Breymann", "Berg" and "Berg2", multivariate for "ECP" and "ECP2")
"KS" = Kolmogorov-Smirnov test statistic (univariate for "Breymann", "Berg" and "Berg2", multivariate for "ECP" and "ECP2")
"AD" = Anderson-Darling test statistic (only univariate for "Breymann", "Berg" and "Berg2")

B

an integer for the number of bootstrap steps (default B = 200)
For B = 0 the asymptotic p-value is returned if available, otherwise only the test statistic is returned.
WARNING: If B is chosen too large, computations will take very long.

alpha

an integer of the set ⁠2,4,6,...⁠ for the "Berg2" goodness-of-fit test (default alpha = 2)

Details

method = "White":
This goodness-of fit test uses the information matrix equality of White (1982) and was original investigated by Huang and Prokhorov (2011) for copulas.
Schepsmeier (2012) enhanced their approach to the vine copula case.
The main contribution is that under correct model specification the Fisher Information can be equivalently calculated as minus the expected Hessian matrix or as the expected outer product of the score function. The null hypothesis is

H0:H(θ)+C(θ)=0H_0: \boldsymbol{H}(\theta) + \boldsymbol{C}(\theta) = 0

against the alternative

H1:H(θ)+C(θ)0,H_1: \boldsymbol{H}(\theta) + \boldsymbol{C}(\theta) \neq 0 ,

where H(θ)\boldsymbol{H}(\theta) is the expected Hessian matrix and C(θ)\boldsymbol{C}(\theta) is the expected outer product of the score function.
For the calculation of the test statistic we use the consistent maximum likelihood estimator θ^\hat{\theta} and the sample counter parts of H(θ)\boldsymbol{H}(\theta) and C(θ)\boldsymbol{C}(\theta).
The correction of the Covariance-Matrix in the test statistic for the uncertainty in the margins is skipped. The implemented test assumes that there is no uncertainty in the margins. The correction can be found in Huang and Prokhorov (2011) for bivariate copulas and in Schepsmeier (2013) for vine copulas. It involves multi-dimensional integrals.

method = "IR":
As the White test the information matrix ratio test is based on the expected Hessian matrix H(θ)\boldsymbol{H}(\theta) and the expected outer product of the score function C(θ)\boldsymbol{C}(\theta).

H0:H(θ)1C(θ)=IpH_0:-\boldsymbol{H}(\theta)^{-1}\boldsymbol{C}(\theta) = I_{p}

against the alternative

H1:H(θ)1C(θ)Ip.H_1: -\boldsymbol{H}(\theta)^{-1}\boldsymbol{C}(\theta) \neq I_{p} .

The test statistic can then be calculated as

IRn:=tr(Φ(θ))/pIR_n:=tr(\Phi(\theta))/p

with Φ(θ)=H(θ)1C(θ)\Phi(\theta)=-\boldsymbol{H}(\theta)^{-1}\boldsymbol{C}(\theta), pp is the number of parameters, i.e. the length of θ\theta, and tr(A)tr(A) is the trace of the matrix AA
For details see Schepsmeier (2013)

method = "Breymann", method = "Berg" and method = "Berg2":
These tests are based on the multivariate probability integral transform (PIT) applied in RVinePIT(). The multivariate data yiy_{i} returned form the PIT are aggregated to univariate data by different aggregation functions Γ()\Gamma(\cdot) in the sum

st=i=1dΓ(yit),t=1,...,ns_t=\sum_{i=1}^d \Gamma(y_{it}), t=1,...,n

. In Breymann et al. (2003) the weight function is suggested as Γ()=Φ1()2\Gamma(\cdot)=\Phi^{-1}(\cdot)^2, while in Berg and Bakken (2007) the weight function is either Γ()=0.5\Gamma(\cdot)=|\cdot-0.5| (method="Berg") or Γ()=(0.5)α,α=2,4,6,...\Gamma(\cdot)=(\cdot-0.5)^{\alpha},\alpha=2,4,6,... (method="Berg2").
Furthermore, the "Berg" and "Berg2" test are based on the order statistics of the PIT returns.
See Berg and Bakken (2007) or Schepsmeier (2013) for details.

method = "ECP" and method = "ECP2":
Both tests are test for H0:CC0H_0: C \in C_0 against H1:CC0H_1: C \notin C_0 where C denotes the (vine) copula distribution function and C0C_0 is a class of parametric (vine) copulas with ΘRp\Theta\subseteq R^p being the parameter space of dimension p. They are based on the empirical copula process (ECP)

C^n(u)Cθ^n(u),\hat{C}_n(u)-C_{\hat{\theta}_n}(u),

with u=(u1,,ud)[0,1]du=(u_1,\ldots,u_d)\in[0,1]^d and C^n(u)=1n+1t=1n1{Ut1u1,,Utdud}\hat{C}_n(u) = \frac{1}{n+1}\sum_{t=1}^n \boldsymbol{1}_{\{U_{t1}\leq u_1,\ldots,U_{td}\leq u_d \}}. The ECP is utilized in a multivariate Cramer-von Mises (CvM) or multivariate Kolmogorov-Smirnov (KS) based test statistic. An extension of the ECP-test is the combination of the multivariate PIT approach with the ECP. The general idea is that the transformed data of a multivariate PIT should be "close" to the independence copula Genest et al. (2009). Thus a distance of CvM or KS type between them is considered. This approach is called ECP2. Again we refer to Schepsmeier (2013) for details.

Value

For method = "White":

White

test statistic

p.value

p-value, either asymptotic for B = 0 or bootstrapped for B > 0

For method = "IR":

IR

test statistic (raw version as stated above)

p.value

So far no p-value is returned nigher a asymptotic nor a bootstrapped one. How to calculated a bootstrapped p-value is explained in Schepsmeier (2013). Be aware, that the test statistics than have to be adjusted with the empirical variance.

For method = "Breymann", method = "Berg" and method = "Berg2":

CvM, KS, AD

test statistic according to the choice of statistic

p.value

p-value, either asymptotic for B = 0 or bootstrapped for B > 0. A asymptotic p-value is only available for the Anderson-Darling test statistic if the R-package ADGofTest is loaded.
Furthermore, a asymptotic p-value can be calculated for the Kolmogorov-Smirnov test statistic. For the Cramer-von Mises no asymptotic p-value is available so far.

For method = "ECP" and method = "ECP2":

CvM, KS

test statistic according to the choice of statistic

p.value

bootstrapped p-value


Warning: The code for all the p-values are not yet approved since some of them are moved from R-code to C-code. If you need p-values the best way is to write your own algorithm as suggested in Schepsmeier (2013) to get bootstrapped p-values.

Author(s)

Ulf Schepsmeier

References

Berg, D. and H. Bakken (2007) A copula goodness-of-fit approach based on the conditional probability integral transformation. https://www.danielberg.no/publications/Btest.pdf

Breymann, W., A. Dias and P. Embrechts (2003) Dependence structures for multivariate high-frequency data in finance. Quantitative Finance 3, 1-14

Genest, C., B. Remillard, and D. Beaudoin (2009) Goodness-of-fit tests for copulas: a review and power study. Insur. Math. Econ. 44, 199-213.

Huang, w. and A. Prokhorov (2011). A goodness-of-fit test for copulas. to appear in Econometric Reviews

Schepsmeier, U. (2013) A goodness-of-fit test for regular vine copula models. Preprint https://arxiv.org/abs/1306.0818

Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.

White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-26.

See Also

BiCopGofTest(), RVinePIT()

Examples

## time-consuming example

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))

# White test with asymptotic p-value
RVineGofTest(daxreturns[,1:5], RVM, B = 0)

# ECP2 test with Cramer-von-Mises test statistic and a bootstrap
# with 200 replications for the calculation of the p-value
RVineGofTest(daxreturns[,1:5], RVM, method = "ECP2",
             statistic = "CvM", B = 200)

Gradient of the Log-Likelihood of an R-Vine Copula Model

Description

This function calculates the gradient of the log-likelihood of a d-dimensional R-vine copula model with respect to the copula parameter and evaluates it on a given copula data set.

Usage

RVineGrad(
  data,
  RVM,
  par = RVM$par,
  par2 = RVM$par2,
  start.V = NA,
  posParams = (RVM$family > 0)
)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters.
Only the following copula families are allowed in RVM$family
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par

A d x d matrix with the pair-copula parameters (optional; default: par = RVM$par).

par2

A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: par2 = RVM$par2).

start.V

Transformations (h-functions and log-likelihoods of each pair-copula) of previous calculations (see output; default: start.V = NA).

posParams

A d x d matrix indicating which copula has to be considered in the gradient (default: posParams = (RVM$family > 0)).

Details

The ordering of the gradient is due to the ordering of the R-vine matrix. The gradient starts at the lower right corner of the R-vine matrix and goes column by column to the left and up, i.e. the first entry of the gradient is the last entry of the second last column of the par-matrix followed by the last entry of the third last column and the second last entry of this column. If there is a copula family with two parameters, i.e. the t-copula, the derivative with respect to the second parameter is at the end of the gradient vector in order of their occurrence.

Value

gradient The calculated gradient of the log-likelihood value of the R-vine copula model. (three matrices: direct, indirect and value).

Note

The gradient for R-vine copula models with two parameter Archimedean copulas, i.e. BB1, BB6, BB7, BB8 and their rotated versions can not yet be calculated. The derivatives of these bivariate copulas are more complicated.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Schepsmeier, U. and J. Stoeber (2014) Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55(2), 525-542. online first: https://link.springer.com/article/10.1007/s00362-013-0498-x.

Web supplement: Derivatives and Fisher Information of bivariate copulas. https://mediatum.ub.tum.de/node?id=1119201

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 28 (6), 2679-2707 https://link.springer.com/article/10.1007/s00180-013-0423-8#.

See Also

BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCopHfuncDeriv2(),
RVineMatrix(), RVineMLE(), RVineHessian()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the gradient of the first row of the data
out2 <- RVineGrad(simdata[1,], RVM)
out2$gradient

Hessian Matrix of the Log-Likelihood of an R-Vine Copula Model

Description

This function calculates the Hessian matrix of the log-likelihood of a d-dimensional R-vine copula model with respect to the copula parameter and evaluates it on a given copula data set.

Usage

RVineHessian(data, RVM)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure, the pair-copula families, and the parameters.
Only the following copula families are allowed in RVM$family
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

Value

hessian

The calculated Hessian matrix of the log-likelihood value of the R-vine copula model.

der

The product of the gradient vector with its transposed version.

Note

The Hessian matrix is not available for R-vine copula models with two parameter Archimedean copulas, i.e. BB1, BB6, BB7, BB8 and their rotated versions.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Schepsmeier, U. and J. Stoeber (2014) Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55(2), 525-542. online first: https://link.springer.com/article/10.1007/s00362-013-0498-x.

Web supplement: Derivatives and Fisher Information of bivariate copulas. https://mediatum.ub.tum.de/node?id=1119201

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 28 (6), 2679-2707 https://link.springer.com/article/10.1007/s00180-013-0423-8#.

See Also

BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCopHfuncDeriv2(),
RVineMatrix(), RVineMLE(), RVineGrad()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the Hessian matrix of the first row of the data
out2 <- RVineHessian(simdata[1,], RVM)
out2$hessian

Log-Likelihood of an R-Vine Copula Model

Description

This function calculates the log-likelihood of a d-dimensional R-vine copula model for a given copula data set.

Usage

RVineLogLik(
  data,
  RVM,
  par = RVM$par,
  par2 = RVM$par2,
  separate = FALSE,
  verbose = TRUE,
  check.pars = TRUE,
  calculate.V = TRUE
)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters.

par

A d x d matrix with the pair-copula parameters (optional; default: par = RVM$par).

par2

A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: par2 = RVM$par2).

separate

Logical; whether log-likelihoods are returned point wisely (default: separate = FALSE).

verbose

In case something goes wrong, additional output will be plotted.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

calculate.V

logical; whether V matrices should be calculated. Default is TRUE, but requires a lot of memory when dimension is large. Use FALSE for a memory efficient version.

Details

For observations u=(u1,...,uN)\boldsymbol{u}=(\boldsymbol{u}_1^\prime,...,\boldsymbol{u}_N^\prime)^\prime the log-likelihood of a dd-dimensional R-vine copula with d1d-1 trees and corresponding edge sets E1,...,Ed1E_1,...,E_{d-1} is given by

loglik:=lRVine(θu)\texttt{loglik}:=l_{RVine}\left(\boldsymbol{\theta}|\boldsymbol{u}\right)

=i=1N=1d1eEln[cj(e),k(e)D(e)(F(ui,j(e)ui,D(e)),F(ui,k(e)ui,D(e))θj(e),k(e)D(e))]=\sum_{i=1}^N \sum_{\ell=1}^{d-1} \sum_{e\in E_\ell} \ln[c_{j(e),k(e)|D(e)}(F(u_{i,j(e)}|u_{i,D(e)}),F(u_{i,k(e)}|u_{i,D(e)})|\theta_{j(e),k(e)|D(e)})]

where ui=(ui,1,...,ui,d)[0,1]d, i=1,...,N\boldsymbol{u}_i=(u_{i,1},...,u_{i,d})^\prime\in[0,1]^d,\ i=1,...,N. Further cj(e),k(e)D(e)c_{j(e),k(e)|D(e)} denotes a bivariate copula density associated to an edge ee and with parameter(s) θj(e),k(e)D(e)\boldsymbol{\theta}_{j(e),k(e)|D(e)}. Conditional distribution functions such as F(ui,j(e)ui,D(e))F(u_{i,j(e)}|\boldsymbol{u}_{i,D(e)}) are obtained recursively using the relationship

h(uv,θ):=F(uv)=dCuvjvj(F(uvj),F(vjvj))/dF(vjvj),h(u|\boldsymbol{v},\boldsymbol{\theta}) := F(u|\boldsymbol{v}) = d C_{uv_j|v_{-j}}(F(u|v_{-j}),F(v_j|v_{-j}))/d F(v_j|v_{-j}),

where CuvjvjC_{uv_j|\boldsymbol{v}_{-j}} is a bivariate copula distribution function with parameter(s) θ\boldsymbol{\theta} and vj\boldsymbol{v}_{-j} denotes a vector with the jj-th component vjv_j removed. The notation of h-functions is introduced for convenience. For more details see Dissmann et al. (2013).

Value

loglik

The calculated log-likelihood value of the R-vine copula model.

V

The stored transformations (h-functions and log-likelihoods of each pair-copula) which may be used for posterior updates (three matrices: direct, indirect and value).

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann, Jakob Stoeber

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

BiCopHfunc(), RVineMatrix(), RVineMLE(), RVineAIC(), RVineBIC()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the log-likelihood
ll <- RVineLogLik(simdata, RVM, separate = FALSE)
ll$loglik

# compute the pointwise log-likelihoods
ll <- RVineLogLik(simdata, RVM, separate = TRUE)
ll$loglik

R-Vine Copula Model in Matrix Notation

Description

This function creates an RVineMatrix() object which encodes an R-vine copula model. It contains the matrix identifying the R-vine tree structure, the matrix identifying the copula families utilized and two matrices for corresponding parameter values.

Usage

RVineMatrix(
  Matrix,
  family = array(0, dim = dim(Matrix)),
  par = array(NA, dim = dim(Matrix)),
  par2 = array(NA, dim = dim(Matrix)),
  names = NULL,
  check.pars = TRUE
)

Arguments

Matrix

Lower (or upper) triangular d x d matrix that defines the R-vine tree structure.

family

Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns the pair-copula families to each (conditional) pair defined by Matrix (default: family = array(0,dim=dim(Matrix))). The bivariate copula families are defined as follows:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; ⁠survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; ⁠survival Gumbel”)
16 = rotated Joe copula (180 degrees; ⁠survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; ⁠survival BB1”)
18 = rotated BB6 copula (180 degrees; ⁠survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; ⁠survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par

Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns the (first) pair-copula parameter to each (conditional) pair defined by Matrix
(default: par = array(NA, dim = dim(Matrix))).

par2

Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns the second parameter for pair-copula families with two parameters to each (conditional) pair defined by Matrix (default: par2 = array(NA, dim = dim(Matrix))).

names

A vector of names for the d variables; default: names = NULL.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

An object of class RVineMatrix(), i.e., a list with the following components:

Matrix

R-vine tree structure matrix.

family

pair-copula family matrix with values as above.

par

pair-copula parameter matrix.

par2

second pair-copula parameter matrix with parameters necessary for pair-copula families with two parameters.

names

variable names (defaults to ⁠V1, V2, ...⁠).

MaxMat, CondDistr

additional matrices required internally for evaluating the density etc.,

type

the type of the vine copula structure; possible types are: "C-vine": all trees consist of a star; "D-vine": all trees consist of a path; "R-vine": all structures that are neither a C- nor D-vine.

tau

Kendall's tau matrix,

taildep

matrices of lower and upper tail dependence coefficients,

beta

Blomqvist's beta matrix.

Objects of this class are also returned by the RVineSeqEst(), RVineCopSelect(), and RVineStructureSelect() functions. In this case, further information about the fit is added.

Note

For a comprehensive summary of the vine copula model, use summary(object); to see all its contents, use str(object).
The RVineMatrix() function automatically checks if the given matrix is a valid R-vine matrix (see RVineMatrixCheck()).
Although the function allows upper triangular matrices as its input, it will always store them as lower triangular matrices.

Author(s)

Jeffrey Dissmann, Thomas Nagler

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

RVineMatrixCheck(), RVineSeqEst(), RVineCopSelect(), RVineStructureSelect(), RVineSim(), C2RVine(), D2RVine()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

## define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

## see the object's content or a summary
str(RVM)
summary(RVM)

## inspect the model using plots
## Not run: plot(RVM)  # tree structure
contour(RVM)  # contour plots of all pair-copulas

## simulate from the vine copula model
plot(RVineSim(500, RVM))

R-Vine Matrix Check

Description

The given matrix is tested to be a valid R-vine matrix.

Usage

RVineMatrixCheck(M)

Arguments

M

A dxddxd vine matrix.

Value

code

1 for OK;
-4 matrix is neither lower nor upper triangular;
-3 diagonal can not be put in order d:1;
-2 for not permutation of j:d in column d-j;
-1 if cannot find proper binary array from array in natural order.

Note

The matrix M do not have to be given in natural order or the diagonal in order d:1. The test checks if it can be done in order to be a valid R-vine matrix.
If a function in this package needs the natural order the RVineMatrix object is automatically "normalized".
The function RVineMatrix() automatically checks if the given R-vine matrix is valid.

Author(s)

Harry Joe

References

Joe H, Cooke RM and Kurowicka D (2011). Regular vines: generation algorithm and number of equivalence classes. In Dependence Modeling: Vine Copula Handbook, pp 219–231. World Scientific, Singapore.

See Also

RVineMatrix()

Examples

A1 <- matrix(c(6, 0, 0, 0, 0, 0,
               5, 5, 0, 0, 0, 0,
               3, 4, 4, 0, 0, 0,
               4, 3, 3, 3, 0, 0,
               1, 1, 2, 2, 2, 0,
               2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b1 <- RVineMatrixCheck(A1)
print(b1)
# improper vine matrix, code=-1
A2 <- matrix(c(6, 0, 0, 0, 0, 0,
               5, 5, 0, 0, 0, 0,
               4, 4, 4, 0, 0, 0,
               1, 3, 3, 3, 0, 0,
               3, 1, 2, 2, 2, 0,
               2, 2, 1, 1, 1,1 ), 6, 6, byrow = TRUE)
b2 <- RVineMatrixCheck(A2)
print(b2)
# improper vine matrix, code=-2
A3 <- matrix(c(6, 0, 0, 0, 0, 0,
               3, 5, 0, 0, 0, 0,
               3, 4, 4, 0, 0, 0,
               4, 3, 3, 3, 0, 0,
               1, 1, 2, 2, 2, 0,
               2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b3 <- RVineMatrixCheck(A3)
print(b3)

Normalization of R-Vine Matrix

Description

An RVineMatrix() is permuted to achieve a natural ordering (i.e. diag(RVM$Matrix) == d:1)

Usage

RVineMatrixNormalize(RVM)

Arguments

RVM

RVineMatrix() defining the R-vine structure

Value

RVM

An RVineMatrix() in natural ordering with entries in RVM$names keeping track of the reordering.

Examples

Matrix <- matrix(c(5, 2, 3, 1, 4,
                   0, 2, 3, 4, 1,
                   0, 0, 3, 4, 1,
                   0, 0, 0, 4, 1,
                   0, 0, 0, 0, 1), 5, 5)
family <- matrix(1,5,5)

par <- matrix(c(0, 0.2, 0.9, 0.5, 0.8,
                0,   0, 0.1, 0.6, 0.9,
                0,   0,   0, 0.7, 0.5,
                0,   0,   0,   0, 0.8,
                0,   0,   0,   0,   0), 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix, family, par)

# normalise the RVine
RVineMatrixNormalize(RVM)

Random sampling of R-Vine matrices

Description

Sample R-Vine matrices based on the algorithm of Joe et al. (2011).

Usage

RVineMatrixSample(d, size = 1, naturalOrder = FALSE)

Arguments

d

Dimension of the R-Vine matrices.

size

Number of matrices to sample.

naturalOrder

Should the matrices be in the natural order (default: naturalOrder = FALSE).

Value

A list of length size with each element containing one R-Vine matrix.

Note

For some reason, our implementation of Joe et al.'s algorithm always returns a star in the first tree. To fix this, we sample a vine matrix of dimension d + 1 and remove the first tree afterwards

Author(s)

Thibault Vatter

References

Joe H, Cooke RM and Kurowicka D (2011). Regular vines: generation algorithm and number of equivalence classes. In Dependence Modeling: Vine Copula Handbook, pp 219–231. World Scientific, Singapore.

See Also

RVineMatrix(), RVineMatrixCheck()

Examples

# Matrix and sample sizes
d <- 10
size <- 5

# Sample R-vine matrices
RVM <- RVineMatrixSample(d, size)
sapply(RVM, RVineMatrixCheck)

# Sample R-vine matrices in the natural order
RVM <- RVineMatrixSample(d, size, naturalOrder = TRUE)
sapply(RVM, RVineMatrixCheck)

Maximum Likelihood Estimation of an R-Vine Copula Model

Description

This function calculates the maximum likelihood estimate (MLE) of the R-vine copula model parameters using sequential estimates as initial values (if not provided).

Usage

RVineMLE(
  data,
  RVM,
  start = RVM$par,
  start2 = RVM$par2,
  maxit = 200,
  max.df = 30,
  max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
  grad = FALSE,
  hessian = FALSE,
  se = FALSE,
  ...
)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters (if known).

start

Lower triangular d x d matrix with zero diagonal entries with starting values for the pair-copula parameters (optional; otherwise they are calculated via
RVineSeqEst(); default: start = RVM$par).

start2

Lower triangular d x d matrix with zero diagonal entries with starting values for the second parameters of pair-copula families with two parameters (optional; otherwise they are calculated via RVineSeqEst(); default: start2 = RVM$par2).

maxit

The maximum number of iteration steps (optional; default: maxit = 200).

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst()).

max.BB

List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

grad

If RVM$family only contains one parameter copula families or the t-copula the analytical gradient can be used for maximization of the log-likelihood (see RVineGrad(); default: grad = FALSE).

hessian

Logical; whether the Hessian matrix of parameter estimates is estimated (default: hessian = FALSE). Note that this is not the Hessian Matrix calculated via RVineHessian() but via finite differences.

se

Logical; whether standard errors of parameter estimates are estimated on the basis of the Hessian matrix (see above; default: se = FALSE).

...

Further arguments for optim (e.g. factr controls the convergence of the "L-BFGS-B" method, or trace, a non-negative integer, determines if tracing information on the progress of the optimization is produced.)
For more details see the documentation of optim().

Value

RVM

RVineMatrix() object with the calculated parameters stored in RVM$par and RVM$par2. Additional information about the fit is added (e.g., log-likelihood, AIC, BIC).

value

Optimized log-likelihood value corresponding to the estimated pair-copula parameters.

convergence

An integer code indicating either successful convergence (convergence = 0) or an error:
1 = the iteration limit maxit has been reached
51 = a warning from the "L-BFGS-B" method; see component message for further details
52 = an error from the "L-BFGS-B" method; see component message for further details

message

A character string giving any additional information returned by optim(), or NULL.

counts

A two-element integer vector giving the number of calls to fn and gr respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to fn to compute a finite-difference approximation to the gradient.

hessian

If hessian = TRUE, the Hessian matrix is returned. Its calculation is on the basis of finite differences (output of optim).

Note

RVineMLE uses the L-BFGS-B method for optimization.
If the analytical gradient is used for maximization, computations may be up to 10 times faster than using finite differences.

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 1-29 https://link.springer.com/article/10.1007/s00180-013-0423-8#.

See Also

RVineSeqEst(), RVineStructureSelect(), RVineMatrix(), RVineGrad(), RVineHessian()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the MLE
mle <- RVineMLE(simdata, RVM, grad = TRUE, trace = 0)

# compare parameters
round(mle$RVM$par - RVM$par, 2)

Blomqvist's Beta Values of an R-Vine Copula Model

Description

This function computes the values of Blomqvist's beta corresponding to the parameters of an R-vine copula model.

Usage

RVinePar2Beta(RVM, check.pars = TRUE)

Arguments

RVM

An RVineMatrix() object.
Note that the Student's t-copula is not allowed since the CDF of the t-copula is not implemented (see BiCopCDF() and BiCopPar2Beta()).

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

Matrix with the same structure as the family and parameter matrices of the RVineMatrix() object RVM where the entries are values of Blomqvist's beta corresponding to the families and parameters of the R-vine copula model given by RVM.

Author(s)

Ulf Schepsmeier

See Also

RVineMatrix(), BiCopPar2Beta()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# compute the Blomqvist's beta values
BlomBeta <- RVinePar2Beta(RVM)

Kendall's Tau Values of an R-Vine Copula Model

Description

This function computes the values of Kendall's tau corresponding to the parameters of an R-vine copula model.

Usage

RVinePar2Tau(RVM, check.pars = TRUE)

Arguments

RVM

An RVineMatrix() object.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

Matrix with the same structure as the family and parameter matrices of the RVineMatrix() object RVM where the entries are values of Kendall's tau corresponding to the families and parameters of the R-vine copula model given by RVM.

Author(s)

Jeffrey Dissmann

See Also

RVineMatrix(), BiCopPar2Tau()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# compute the Kendall's tau values
tau <- RVinePar2Tau(RVM)

PDF of an R-Vine Copula Model

Description

This function calculates the probability density function of a d-dimensional R-vine copula.

Usage

RVinePDF(newdata, RVM, verbose = TRUE)

Arguments

newdata

An N x d data matrix that specifies where the density shall be evaluated.

RVM

An RVineMatrix() object including the structure and the pair-copula families and parameters.

verbose

In case something goes wrong, additional output will be plotted.

Details

The density of a dd-dimensional R-vine copula with d1d-1 trees and corresponding edge sets E1,...,Ed1E_1,...,E_{d-1} is given by

=1d1eEcj(e),k(e)D(e)(F(uj(e)uD(e)),F(uk(e)uD(e))θj(e),k(e)D(e)),\prod_{\ell=1}^{d-1} \prod_{e\in E_\ell } c_{j(e),k(e)|D(e)}(F(u_{j(e)}|u_{D(e)}),F(u_{k(e)}|u_{D(e)})|\theta_{j(e),k(e)|D(e)}),

where u=(u1,...,ud)[0,1]d\boldsymbol{u}=(u_{1},...,u_{d})^\prime\in[0,1]^d. Further cj(e),k(e)D(e)c_{j(e),k(e)|D(e)} denotes a bivariate copula density associated to an edge ee and with parameter(s) θj(e),k(e)D(e)\boldsymbol{\theta}_{j(e),k(e)|D(e)}. Conditional distribution functions such as F(uj(e)uD(e))F(u_{j(e)}|\boldsymbol{u}_{D(e)}) are obtained recursively using the relationship

h(uv,θ):=F(uv)=dCuvjvj(F(uvj),F(vjvj))/dF(vjvj),h(u|\boldsymbol{v},\boldsymbol{\theta}) := F(u|\boldsymbol{v}) = d C_{uv_j|v_{-j}}(F(u|v_{-j}),F(v_j|v_{-j}))/d F(v_j|v_{-j}),

where CuvjvjC_{uv_j|\boldsymbol{v}_{-j}} is a bivariate copula distribution function with parameter(s) θ\boldsymbol{\theta} and vj\boldsymbol{v}_{-j} denotes a vector with the jj-th component vjv_j removed. The notation of h-functions is introduced for convenience. For more details see Dissmann et al. (2013).

The function is actually just a wrapper to RVineLogLik().

Author(s)

Thomas Nagler

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

BiCopHfunc(), RVineMatrix(), RVineMLE(), RVineAIC(), RVineBIC()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# compute the density at (0.1, 0.2, 0.3, 0.4, 0.5)
RVinePDF(c(0.1, 0.2, 0.3, 0.4, 0.5), RVM)

Probability Integral Transformation for R-Vine Copula Models

Description

This function applies the probability integral transformation (PIT) for R-vine copula models to given copula data.

Usage

RVinePIT(data, RVM)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

RVineMatrix() objects of the R-vine model.

Details

The multivariate probability integral transformation (PIT) of Rosenblatt (1952) transforms the copula data u=(u1,,ud)u = (u_1,\ldots,u_d) with a given multivariate copula C into independent data in [0,1]d[0,1]^d, where d is the dimension of the data set.

Let u=(u1,,ud)u = (u_1,\ldots,u_d) denote copula data of dimension d. Further let C be the joint cdf of u=(u1,,ud)u = (u_1,\ldots,u_d). Then Rosenblatt's transformation of u, denoted as y=(y1,,yd)y = (y_1,\ldots,y_d), is defined as

y1:=u1,  y2:=C(u2u1), yd:=C(udu1,,ud1),y_1 := u_1,\ \ y_2 := C(u_2|u_1), \ldots\ y_d := C(u_d|u_1,\ldots,u_{d-1}),

where C(uku1,,uk1)C(u_k|u_1,\ldots,u_{k-1}) is the conditional copula of UkU_k given U1=u1,,Uk1=uk1,k=2,,dU_1 = u_1,\ldots, U_{k-1} = u_{k-1}, k = 2,\ldots,d. The data vector y=(y1,,yd)y = (y_1,\ldots,y_d) is now i.i.d. with yiU[0,1]y_i \sim U[0, 1]. The algorithm for the R-vine PIT is given in the appendix of Schepsmeier (2015).

Value

An N x d matrix of PIT data from the given R-vine copula model.

Author(s)

Ulf Schepsmeier

References

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. The Annals of Mathematical Statistics 23 (3), 470-472.

Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.

See Also

RVineGofTest()

Examples

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:3], c(1:6))

# PIT data
pit <- RVinePIT(daxreturns[,1:3], RVM)

par(mfrow = c(1,2))
plot(daxreturns[,1], daxreturns[,2])	# correlated data
plot(pit[,1], pit[,2])	# i.i.d. data

cor(pit, method = "kendall")

Sequential Estimation of an R-Vine Copula Model

Description

This function sequentially estimates the pair-copula parameters of a d-dimensional R-vine copula model as specified by the corresponding RVineMatrix() object.

Usage

RVineSeqEst(
  data,
  RVM,
  method = "mle",
  se = FALSE,
  max.df = 30,
  max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
  progress = FALSE,
  weights = NA,
  cores = 1
)

Arguments

data

An N x d data matrix (with uniform margins).

RVM

An RVineMatrix() object including the structure, the pair-copula families and the pair-copula parameters (if they are known).

method

indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (⁠family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34⁠ or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

se

Logical; whether standard errors are estimated (default: se = FALSE).

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst()).

max.BB

List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

progress

Logical; whether the pairwise estimation progress is printed (default: progress = FALSE).

weights

Numerical; weights for each observation (optional).

cores

integer; if cores > 1, estimation will be parallelized within each tree (using parallel::parLapply()). However, the overhead caused by parallelization is likely to make the function run slower unless sample size is really large and method = "itau".

Details

The pair-copula parameter estimation is performed tree-wise, i.e., for each R-vine tree the results from the previous tree(s) are used to calculate the new copula parameters using BiCopEst().

Value

An RVineMatrix() object with the sequentially estimated parameters stored in RVM$par and RVM$par2. The object is augmented by the following information about the fit:

se, se2

standard errors for the parameter estimates (if se = TRUE); note that these are only approximate since they do not account for the sequential nature of the estimation,

nobs

number of observations,

logLik, pair.logLik

log likelihood (overall and pairwise)

AIC, pair.AIC

Aikaike's Informaton Criterion (overall and pairwise),

BIC, pair.BIC

Bayesian's Informaton Criterion (overall and pairwise),

emptau

matrix of empirical values of Kendall's tau,

p.value.indeptest

matrix of p-values of the independence test.

Note

For a comprehensive summary of the fitted model, use summary(object); to see all its contents, use str(object).

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann, Thomas Nagler

See Also

RVineMatrix(), BiCop(), BiCopEst(), plot.RVineMatrix(), contour.RVineMatrix()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# sequential estimation
summary(RVineSeqEst(simdata, RVM, method = "itau", se = TRUE))
summary(RVineSeqEst(simdata, RVM, method = "mle", se = TRUE))

Simulation from an R-Vine Copula Model

Description

This function simulates from a given R-vine copula model.

Usage

RVineSim(N, RVM, U = NULL)

Arguments

N

Number of d-dimensional observations to simulate.

RVM

An RVineMatrix() object containing the information of the R-vine copula model. Optionally, a length-N list of RVineMatrix() objects sharing the same structure, but possibly different family/parameter can be supplied.

U

If not NULL(), an (N,d)-matrix of U[0,1]U[0,1] random variates to be transformed to the copula sample.

Value

An N x d matrix of data simulated from the given R-vine copula model.

Author(s)

Jeffrey Dissmann

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

RVineMatrix(), BiCopSim()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

Standard Errors of an R-Vine Copula Model

Description

This function calculates the standard errors of a d-dimensional R-vine copula model given the Hessian matrix.

Usage

RVineStdError(hessian, RVM)

Arguments

hessian

The Hessian matrix of the given R-vine.

RVM

An RVineMatrix() object including the structure, the pair-copula families, and the parameters.

Value

se

The calculated standard errors for the first parameter matrix. The entries are ordered with respect to the ordering of the RVM$par matrix.

se2

The calculated standard errors for the second parameter matrix.

Note

The negative Hessian matrix should be positive semidefinite. Otherwise NAs will be returned in some entries and the non-NA entries may be wrong. If the negative Hessian matrix is negative definite, then one could try a near positive matrix. The package Matrix provides a function called nearPD to estimate a matrix which is positive definite and close to the given matrix.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

Schepsmeier, U. and J. Stoeber (2014) Derivatives and Fisher information of bivariate copulas. Statistical Papers, 55(2), 525-542. online first: https://link.springer.com/article/10.1007/s00362-013-0498-x.

Web supplement: Derivatives and Fisher Information of bivariate copulas. https://mediatum.ub.tum.de/node?id=1119201

Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular vine copula models. Computational Statistics, 28 (6), 2679-2707 https://link.springer.com/article/10.1007/s00180-013-0423-8#.

See Also

BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCopHfuncDeriv2(),
RVineMatrix(), RVineHessian(), RVineGrad()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
            0, 2, 3, 4, 1,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 3,
            0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
         0, 0, 1.1, 1.6, 0.9,
         0, 0, 0, 1.9, 0.5,
         0, 0, 0, 0, 4.8,
         0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the Hessian matrix of the first row of the data
out2 <- RVineHessian(simdata,RVM)

# get the standard errors
RVineStdError(out2$hessian, RVM)

Sequential Specification of R- and C-Vine Copula Models

Description

This function fits either an R- or a C-vine copula model to a d-dimensional copula data set. Tree structures are determined and appropriate pair-copula families are selected using BiCopSelect() and estimated sequentially (forward selection of trees).

Usage

RVineStructureSelect(
  data,
  familyset = NA,
  type = 0,
  selectioncrit = "AIC",
  indeptest = FALSE,
  level = 0.05,
  trunclevel = NA,
  progress = FALSE,
  weights = NA,
  treecrit = "tau",
  rotations = TRUE,
  se = FALSE,
  presel = TRUE,
  method = "mle",
  cores = 1
)

Arguments

data

An N x d data matrix (with uniform margins).

familyset

An integer vector of pair-copula families to select from. The vector has to include at least one pair-copula family that allows for positive and one that allows for negative dependence. Not listed copula families might be included to better handle limit cases. If familyset = NA (default), selection among all possible families is performed. Coding of pair-copula families is the same as in BiCop().

type

Type of the vine model to be specified:
0 or "RVine" = R-vine (default)
1 or "CVine" = C-vine
C- and D-vine copula models with pre-specified order can be specified using CDVineCopSelect of the package CDVine. Similarly, R-vine copula models with pre-specified tree structure can be specified using RVineCopSelect().

selectioncrit

Character indicating the criterion for pair-copula selection. Possible choices:selectioncrit = "AIC" (default), "BIC", or "logLik" (see BiCopSelect()).

indeptest

logical; whether a hypothesis test for the independence of u1 and u2 is performed before bivariate copula selection (default: indeptest = FALSE; see BiCopIndTest()). The independence copula is chosen for a (conditional) pair if the null hypothesis of independence cannot be rejected.

level

numeric; significance level of the independence test (default: level = 0.05).

trunclevel

integer; level of truncation.

progress

logical; whether the tree-wise specification progress is printed (default: progress = FALSE).

weights

numeric; weights for each observation (optional).

treecrit

edge weight for Dissman's structure selection algorithm, see Details.

rotations

If TRUE, all rotations of the families in familyset are included.

se

Logical; whether standard errors are estimated (default: se = FALSE).

presel

Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30\ (on average), but may yield slightly worse results in few special cases.

method

indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (⁠family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34⁠ or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

cores

integer; if cores > 1, estimation will be parallelized within each tree (using parallel::parLapply()). Note that parallelization causes substantial overhead and may be slower than single-threaded computation when dimension, sample size, or family set are small or method = "itau".

Details

R-vine trees are selected using maximum spanning trees w.r.t. some edge weights. The most commonly used edge weight is the absolute value of the empirical Kendall's tau, say τ^ij\hat{\tau}_{ij}. Then, the following optimization problem is solved for each tree:

maxedges  eij  in  spanning  treeτ^ij,\max \sum_{\mathrm{edges }\; e_{ij} \in \; \mathrm{ in \; spanning \; tree}} |\hat{\tau}_{ij}|,

where a spanning tree is a tree on all nodes. The setting of the first tree selection step is always a complete graph. For subsequent trees, the setting depends on the R-vine construction principles, in particular on the proximity condition.

Some commonly used edge weights are implemented:

"tau" absolute value of empirical Kendall's tau.
"rho" absolute value of empirical Spearman's rho.
"AIC" Akaike information (multiplied by -1).
"BIC" Bayesian information criterion (multiplied by -1).
"cAIC" corrected Akaike information criterion (multiplied by -1).

If the data contain NAs, the edge weights in "tau" and "rho" are multiplied by the square root of the proportion of complete observations. This penalizes pairs where less observations are used.

The criteria "AIC", "BIC", and "cAIC" require estimation and model selection for all possible pairs. This is computationally expensive and much slower than "tau" or "rho". The user can also specify a custom function to calculate the edge weights. The function has to be of type function(u1, u2, weights) ... and must return a numeric value. The weights argument must exist, but does not has to be used. For example, "tau" (without using weights) can be implemented as follows:
⁠function(u1, u2, weights)⁠
abs(cor(u1, u2, method = "kendall", use = "complete.obs"))

The root nodes of C-vine trees are determined similarly by identifying the node with strongest dependencies to all other nodes. That is we take the node with maximum column sum in the empirical Kendall's tau matrix.

Note that a possible way to determine the order of the nodes in the D-vine is to identify a shortest Hamiltonian path in terms of weights 1τij^1-|\hat{\tau_{ij}|}. This can be established for example using the package TSP. Example code is shown below.

Value

An RVineMatrix() object with the selected structure (RVM$Matrix) and families (RVM$family) as well as sequentially estimated parameters stored in RVM$par and RVM$par2. The object is augmented by the following information about the fit:

se, se2

standard errors for the parameter estimates; note that these are only approximate since they do not account for the sequential nature of the estimation,

nobs

number of observations,

logLik, pair.logLik

log likelihood (overall and pairwise)

AIC, pair.AIC

Aikaike's Informaton Criterion (overall and pairwise),

BIC, pair.BIC

Bayesian's Informaton Criterion (overall and pairwise),

emptau

matrix of empirical values of Kendall's tau,

p.value.indeptest

matrix of p-values of the independence test.

Note

For a comprehensive summary of the vine copula model, use summary(object); to see all its contents, use str(object).

Author(s)

Jeffrey Dissmann, Eike Brechmann, Ulf Schepsmeier, Thomas Nagler

References

Brechmann, E. C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40 (1), 68-85.

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.

See Also

RVineMatrix(), BiCop(), RVineCopSelect(), plot.RVineMatrix(), contour.RVineMatrix()

Examples

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
# using only the first 4 variables and the first 250 observations
# we allow for the copula families: Gauss, t, Clayton, Gumbel, Frank and Joe
daxreturns <- daxreturns[1:250, 1:4]
RVM <- RVineStructureSelect(daxreturns, c(1:6), progress = TRUE)

## see the object's content or a summary
str(RVM)
summary(RVM)

## inspect the fitted model using plots
## Not run: plot(RVM)  # tree structure
contour(RVM)  # contour plots of all pair-copulas

## estimate a C-vine copula model with only Clayton, Gumbel and Frank copulas
CVM <- RVineStructureSelect(daxreturns, c(3,4,5), "CVine")

## determine the order of the nodes in a D-vine using the package TSP
library(TSP)
d <- dim(daxreturns)[2]
M <- 1 - abs(TauMatrix(daxreturns))
hamilton <- insert_dummy(TSP(M), label = "cut")
sol <- solve_TSP(hamilton, method = "repetitive_nn")
order <- cut_tour(sol, "cut")
DVM <- D2RVine(order, family = rep(0,d*(d-1)/2), par = rep(0, d*(d-1)/2))
RVineCopSelect(daxreturns, c(1:6), DVM$Matrix)

Visualization of R-Vine Tree Structure

Description

Function is deprecated since ⁠VineCopula 2.0⁠. Use plot.RVineMatrix() instead.

Usage

RVineTreePlot(
  x,
  tree = "ALL",
  type = 0,
  edge.labels = NULL,
  legend.pos = "bottomleft",
  interactive = FALSE,
  ...
)

Arguments

x

RVineMatrix object.

tree

"ALL" or integer vector; specifies which trees are plotted.

type

integer; specifies how to make use of variable names:
0 = variable names are ignored,
1 = variable names are used to annotate vertices,
2 = uses numbers in plot and adds a legend for variable names.

edge.labels

character; either a vector of edge labels or one of the following:
"family" = pair-copula family abbreviation (see BiCopName()),
"par" = pair-copula parameters,
"tau" = pair-copula Kendall's tau (by conversion of parameters)
"family-par" = pair-copula family and parameters
"family-tau" = pair-copula family and Kendall's tau.

legend.pos

the x argument for graphics::legend().

interactive

logical; if TRUE, the user is asked to adjust the positioning of vertices with his mouse.

...

Arguments passed to network::plot.network().

Author(s)

Thomas Nagler

See Also

plot.RVineMatrix()


Vuong Test Comparing Two R-Vine Copula Models

Description

This function performs a Vuong test between two d-dimensional R-vine copula models as specified by their RVineMatrix() objects.

Usage

RVineVuongTest(data, RVM1, RVM2)

Arguments

data

An N x d data matrix (with uniform margins).

RVM1, RVM2

RVineMatrix() objects of models 1 and 2.

Details

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing non-nested models. For this let c1c_1 and c2c_2 be two competing vine copulas in terms of their densities and with estimated parameter sets θ^1\hat{\boldsymbol{\theta}}_1 and θ^2\hat{\boldsymbol{\theta}}_2. We then compute the standardized sum, ν\nu, of the log differences of their pointwise likelihoods mi:=log[c1(uiθ^1)c2(uiθ^2)]m_i:=\log\left[\frac{c_1(\boldsymbol{u}_i|\hat{\boldsymbol{\theta}}_1)}{c_2(\boldsymbol{u}_i|\hat{\boldsymbol{\theta}}_2)}\right] for observations ui[0,1], i=1,...,N\boldsymbol{u}_i\in[0,1],\ i=1,...,N , i.e.,

statistic:=ν=1ni=1Nmii=1N(mimˉ)2.\texttt{statistic} := \nu = \frac{\frac{1}{n}\sum_{i=1}^N m_i}{\sqrt{\sum_{i=1}^N\left(m_i - \bar{m} \right)^2}}.

Vuong (1989) shows that ν\nu is asymptotically standard normal. According to the null-hypothesis

H0:E[mi]=0 i=1,...,N,H_0: E[m_i] = 0\ \forall i=1,...,N,

we hence prefer vine model 1 to vine model 2 at level α\alpha if

ν>Φ1(1α2),\nu>\Phi^{-1}\left(1-\frac{\alpha}{2}\right),

where Φ1\Phi^{-1} denotes the inverse of the standard normal distribution function. If ν<Φ1(1α2)\nu<-\Phi^{-1}\left(1-\frac{\alpha}{2}\right) we choose model 2. If, however, νΦ1(1α2)|\nu|\leq\Phi^{-1}\left(1-\frac{\alpha}{2}\right), no decision among the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of parameters used in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.

Value

statistic, statistic.Akaike, statistic.Schwarz

Test statistics without correction, with Akaike correction and with Schwarz correction.

p.value, p.value.Akaike, p.value.Schwarz

P-values of tests without correction, with Akaike correction and with Schwarz correction.

Author(s)

Jeffrey Dissmann, Eike Brechmann

References

Vuong, Q. H. (1989). Ratio tests for model selection and non-nested hypotheses. Econometrica 57 (2), 307-333.

See Also

RVineClarkeTest(), RVineAIC(), RVineBIC()

Examples

# vine structure selection time-consuming (~ 20 sec)

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))

# select the C-vine structure, families and parameters
CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine")

# compare the two models based on the data
vuong <- RVineVuongTest(daxreturns[,1:5], RVM, CVM)
vuong$statistic
vuong$statistic.Schwarz
vuong$p.value
vuong$p.value.Schwarz

Matrix of Empirical Kendall's Tau Values

Description

This function computes the empirical Kendall's tau using the algorithm by Knight (1966).

Usage

TauMatrix(data, weights = NA)

Arguments

data

An N x d data matrix.

weights

Numerical; weights for each observation (optional).

Value

Matrix of the empirical Kendall's taus.

Author(s)

Ulf Schepsmeier

References

Knight, W. R. (1966). A computer method for calculating Kendall's tau with ungrouped data. Journal of the American Statistical Association 61 (314), 436-439.

See Also

BiCopTau2Par(), BiCopPar2Tau(), BiCopEst()

Examples

data(daxreturns)
Data <- as.matrix(daxreturns)

# compute the empirical Kendall's taus
TauMatrix(Data)

Deprecated

Description

This functionality is deprecated in 'VineCopula'. Use the package 'VC2copula' instead.

Usage

copulaFromFamilyIndex(family, par, par2 = 0)

surClaytonCopula(param = c(1, 1))

r90ClaytonCopula(param = c(1, 1))

r270ClaytonCopula(param = c(1, 1))

surGumbelCopula(param = c(1, 1))

r90GumbelCopula(param = c(1, 1))

r270GumbelCopula(param = c(1, 1))

joeBiCopula(param = c(1, 1))

surJoeBiCopula(param = c(1, 1))

r90JoeBiCopula(param = c(1, 1))

r270JoeBiCopula(param = c(1, 1))

BB1Copula(param = c(1, 1))

surBB1Copula(param = c(1, 1))

r90BB1Copula(param = c(1, 1))

r270BB1Copula(param = c(1, 1))

BB6Copula(param = c(1, 1))

surBB6Copula(param = c(1, 1))

r90BB6Copula(param = c(1, 1))

r270BB6Copula(param = c(1, 1))

BB7Copula(param = c(1, 1))

surBB7Copula(param = c(1, 1))

r90BB7Copula(param = c(1, 1))

r270BB7Copula(param = c(1, 1))

BB8Copula(param = c(1, 1))

surBB8Copula(param = c(1, 1))

r90BB8Copula(param = c(1, 1))

r270BB8Copula(param = c(1, 1))

tawnT1Copula(param = c(1, 1))

surTawnT1Copula(param = c(1, 1))

r90TawnT1Copula(param = c(1, 1))

r270TawnT1Copula(param = c(1, 1))

tawnT2Copula(param = c(1, 1))

surTawnT2Copula(param = c(1, 1))

r90TawnT2Copula(param = c(1, 1))

r270TawnT2Copula(param = c(1, 1))

vineCopula(RVM, type = "CVine")

Arguments

family

..

par

...

par2

...

param

...

RVM

...

type

...